Физические свойства кристаллического тела представленного на рисунке. Школьная энциклопедия. Что такое кристаллическая решётка

Свойства жидкостей

1. Характеристика жидкого состояния. Ближний порядок.

2. Поверхностное натяжение. Силы, возникающие на кривой поверхности. Формула Лапласа. Смачивание и капиллярные явления.

1. Характеристика жидкого состояния. Жидкое состояние, занимает промежуточное положение между газами и кристаллами , сочетает в себе некоторые черты обоих этих состояний. Для кристаллического состояния характерно упорядоченное расположение частиц (атомов или молекул), в газах в этом смысле полный хаос. Согласно рентгенографическим исследованиям, в отношении характера расположения частиц жидкости занимают промежуточное положение.

В расположении частиц жидкости наблюдается так называемый ближний порядок . Это означает, что по отношению к любой частице расположение ближайших к ней соседей является упорядоченным . Однако по мере удаления от данной частицы расположение по отношению к ней других частиц становится всё менее упорядоченным и довольно быстро порядок в расположении частиц полностью исчезает.

В кристаллах имеет место дальний порядок упорядоченное расположения частиц по отношению к любой частице наблюдается в пределах значительного объёма .

Оценить структуру вещества позволяет радиальная функция распределения (в некоторых учебниках она называется парной функцией распределения). Выберем некоторую молекулу в качестве тела отсчёта. Среднее число молекул в сферическом слое объёмом , находящихся на расстоянии r от выбранной молекулы (Рис. 10.1) обозначим dN(r) . Вероятность обнаружить молекулы в этом сферическом слое

случае идеального газа никакие элементы объёма не имеют преимущества и вероятность нахождения частицы в данном объёме пропорционально объёму и g(r)= 1.

В идеальном кристалле структура жёсткая и все взаимные расстояния являются фиксированными (Рис. 10.2).

Пики соответствует узлам решётки, а конечная ширина линии g(r) является следствием колебаний атомов относительно узла в реальном кристалле.



более сглажены, чем у кристалла). На дальних расстояниях кривая стремится к 1 как для идеального газа.

упорядочена только ориентация , взаимное же расположение, как и в обычных жидкостях, дальнего порядка не обнаруживает .

2. Поверхностное натяжение .

Молекулы жидкости располагаются настолько близко друг к другу, что силы притяжения между ними имеют значительную величину. Взаимодействие быстро убывает с расстоянием, начиная с некоторого расстояния r (радиус молекулярного действия). На каждую молекулу, находящуюся в поверхностном слое толщиной r , будет действовать сила, направленная внутрь жидкости (Рис. 10.5).

на увеличение потенциальной энергии молекулы . То есть в поверхностном слое молекулы обладают дополнительной потенциальной энергией - поверхностной .

Из-за наличия действующих на молекулы в поверхностном слое сил, направленных внутрь жидкости, жидкость стремится к сокращению своей поверхности , как если бы она была заключена в упруго растянутую плёнку, стремящуюся сжаться (никакой плёнки на самом деле нет).

Представим плёнку жидкости (например, мыльную плёнку), натянутую на проволочную рамку, одна из сторон которой (перемычка) может перемещаться (Рис. 10.6). Благодаря стремлению поверхности уменьшиться, на проволочку будет действовать сила. Она направлена по касательной к поверхности жидкости, перпендикулярно к участку контура (длина перемычки), на который она действует ().

равную силе натяжения плёнки, т.е. . Коэффициент 2 появляется из-за того, что плёнка имеет два поверхностных слоя.

Жидкость вне поля внешних сил будет принимать форму с минимальной поверхностью, т.е. форму шара .

Давление под искривлённой поверхностью .

В случае искривлённой поверхности силы поверхностного натяжения стремятся сократить эту поверхность. (Рис. 10.7).

давление в случае неискривлённой поверхности, причём >0 в случае выпуклой поверхности, и <0, если поверхность вогнутая (в этом случае поверхностный слой, стремится сократиться, растягивает жидкость и давление уменьшается).

Вычислим дополнительное давление для сферической поверхности жидкости. Рассечём мысленно сферическую каплю жидкости диаметральной плоскостью на два полушария. Из-за поверхностного натяжения

Лаплас обобщил эту формулу на поверхность любой формы.

Рис. 10.8

Формула Лапласа выглядит так:

Смачивание и капиллярные явления .

Смачивание – явление, возникающее при соприкосновении жидкости с поверхностью твёрдого тела или другой жидкости . Выражается, в частности, в растекании жидкости по твёрдой поверхности . Смачивание вызывает образование мениска в капиллярной трубке, определяет форму капли на твёрдой поверхности и др. (Заметим, что обычно смачивание рассматривают как результат межмолекурного взаимодействия, однако смачивание может быть результатом химической реакции, диффузионных процессов).

Мерой смачивания обычно служит краевой угол между касательными к поверхности жидкости . (Рис. 10.10). Если , то говорят, что

где коэффициенты поверхностного натяжения жидкости на границах: твёрдое тело – газ, твёрдое тело – жидкость, жидкость – газ. Сокращая на , получим для краевого угла соотношение :

(Например, полное смачивание будет при ).

Смачивание имеет важное значение в промышленности . Хорошее смачивание необходимо при крашении, стирке, обработке фотоматериалов, пайке. Примеси сильно сказываются на величине поверхностного натяжения. Например, растворение в воде мыла уменьшает её коэффициент поверхностного натяжения почти в 1,5 раза (что, в частности и обуславливает использование мыла в качестве моющего средства). Несмачивание может приводить к тому, что из решета, нити которого покрыты парафином (при небольшом уровне воды), вода не выливается, опровергая известную поговорку.

Капиллярные явления.

Существование смачивания и краевого угла приводит к тому, что вблизи стенок сосуда наблюдается искривление поверхности жидкости. Если жидкость смачивает стенки, поверхность имеет вогнутую форму, если не смачивает – выпуклую. Такого рода изогнутые поверхности жидкости называются мениском. (рис. 10.11)

Смачивание Несмачивание
Рис. 10.11

Под искривлённой поверхностью в капилляре давление будет отличаться от давления под плоской поверхностью на величину . Между жидкостью в капилляре и в широком сосуде устанавливается такая разность уровней , чтобы гидростатическое давление уравновешивало капиллярное давление . В случае сферической формы мениска

Радиус кривизны мениска выразим через краевой угол и радиус капилляра r , тогда ,

В случае смачивания и высота поднятия жидкости в капилляре тем больше, чем меньше радиус капилляра r .

Капиллярное явление занимает в жизни человека исключительную роль . Снабжение влагой растений, деревьев происходит именно с помощью капилляров, которые есть в каждом растении. Капиллярные явления могут играть и отрицательную роль. Например, в строительстве. Необходимость гидроизоляции фундаментов зданий вызвана капиллярными явлениями.

Вопросы для самоконтроля

1.Охарактеризуйте жидкое состояние в сравнении с кристаллами и газами.

2.Что такое дальний и ближний порядок?

3.Что позволяет сделать радиальная функция распределения? Нарисуйте ее для кристаллов, жидкостей и газов.

4.Что такое коэффициент поверхностного натяжения?

6.Что такое смачивание? Что является мерой смачивания? Приведите примеры процессов, для которых необходимо хорошее смачивание.

7.От чего зависит высота поднятия жидкости в капилляре?

Лекция №5 (11)

Свойства твёрдых тел

1. Аморфные и кристаллические тела. Строение и типы кристаллов. Де

фекты в кристаллах.

2. Механические свойства кристаллов. Механизм пластической деформа-

ции. Деформация упругого растяжения. Закон Гука.

Аморфные и кристаллические тела.

В аморфных телах существует ближний порядок расположения атомов. Кристаллы обладают дальним порядком расположения атомов. Аморфные тела изотропны, кристаллические – анизотропны .

При охлаждении и нагревании кривые зависимости температуры от времени различны для аморфных и кристаллических тел. Для аморфных тел переход из жидкого в твёрдое состояние может быть десятки градусов. Для кристаллов температура плавления постоянна. Возможны случаи, когда одно и тоже вещество, в зависимости от условий охлаждения, может быть получено как в кристаллическом, так и в аморфном твёрдом состоянии. Например, стекло при очень медленном охлаждении расплава может кристаллизоваться . При этом на границах мелких образующихся кристаллов будет происходить отражение и рассеяния света, и закристаллизованное стекло теряет прозрачность.

Кристаллическая решётка . Основным свойством кристаллов является регулярность расположения в них атомов. О совокупности точек, в которых расположены атомы (точнее атомные ядра), говорят как о кристаллической решётке , а сами точки называются узлами решётки .

Основной характеристикой кристаллической решётки является пространственная периодичность её структуры: кристалл как бы состоит из повторяющихся частей (ячеек).

Мы можем разбить кристаллическую решётку на совершенно одинаковые параллелепипеды, содержащие одинаковое количество одинаково расположенных атомов. Кристалл представляет собой совокупность параллелепипедов , параллельно сдвинутых по отношению друг к другу. Если сместить кристаллическую решётку параллельно самой себе на расстояние длины ребра, то решётка совместится сама с собой. Эти смещения называются трансляции , а симметрии решётки по отношению к этим смещениям говорят как о трансляционной симметрии (параллельный перенос, поворот относительно оси, зеркальное отражение и т.п.).

Если в вершине какой-либо элементарной ячейки находится атом, то такие же атомы должны, очевидно, находиться и во всех остальных вершинах этой и других ячеек. Совокупность одинаковых и одинаково расположенных атомов называется решёткой Браве данного кристалла. Она представляет как бы скелет кристаллической решётки , олицетворяющий собой всю её трансляционную симметрию, т.е. всю её периодичность.

Классификация различных типов симметрии кристаллов основывается, прежде всего, на классификации различных типов решёток Браве .

Наиболее симметричной решёткой Браве является решётка, имеющая симметрию куба (кубическая система). Существует три различных

решётки Браве, относящихся к кубической системе: простая ,
объемно-центрированная (в центре куба – атом), гранецентрированная (кроме атомов в вершинах – ещё по атому в

центрах всех их граней). Кроме кубической есть тетрагональная, ромбическая, моноклинная и другие (рассматривать не будем).

Решётка Браве, вообще говоря, не включает в себя всех атомов в кристалле. Реальная кристаллическая решётка может быть представлена как совокупность нескольких решёток Браве, вдвинутых одна в другую .

Физические типы кристаллов .

По роду частиц, из которых построена кристаллическая решётка, по характеру сил взаимодействия между ними, различают ионные, атомные, металлические и молекулярные кристаллы.

1. Ионные кристаллы . В узлах кристаллической решётки располагаются попеременно положительные и отрицательные ионы. Эти ионы притягиваются друг к другу электростатическими (кулоновскими) силами. Пример: решётка каменной соли (рис. 11.1).

Рис. 11.1

2. Атомные кристаллы . Типичными представителями являются графит и алмаз . Связь между атомами – ковалентная . В этом случае каждый из валентных электронов входит в электронную пару, связывающую данный атом с одним из соседей.

3. Металлические кристаллы . Решётки состоят из положительно заряженных ионов , между которыми находятся “свободные” электроны . Эти электроны ”коллективизированы“ и могут рассматриваться как своего рода ”электронный газ“. Электроны играют роль “цемента”, удерживая “+” ионы, иначе решётка распалась бы. Ионы же удерживают электроны в пределах решётки.

4. Молекулярные кристаллы . Примером является лёд. В узлах – молекулы , которые связаны между собой силами Ван-дер-Ваальса , т.е. силами взаимодействия молекулярных электрических диполей .

Могут быть одновременно несколько видов связей (например, в графите – ковалентная, металлическая и Ван-дер-Ваальсовская).

Дефекты в кристаллах .

В реальных кристаллических решётках существует отклонения от идеального расположения атомов в решётках, которые мы до сих пор рассматривали. Все такие отклонения называются дефектами кристаллической решётки .

Точечные дефекты – такие, при которых нарушается ближний порядок :

Другой вид дефектов – дислокации – линейные дефекты кристаллической решётки, нарушающие правильное чередование атомных плоскостей . Они нарушают дальний порядок , искажая всю его структуру. Они играют важную роль в механических свойствах твёрдых тел. Простейшие типы дислокаций краевая и винтовая. В случае краевой дислокации лишняя кристаллическая плоскость вдвинута между соседними слоями атомов (рис. 11.5).

В случае винтовой дислокации часть кристаллической решётки сдвинута относительно другой (рис. 11.6)

Твердым телом называется агрегатное состояние вещества, характеризующееся постоянством формы и объема, причем тепловые движения частиц в них представляют собой хаотические колебания частиц относительно положений равновесия.

Твердые тела подразделяются на кристаллические и аморфные.

Кристаллические тела – это твердые тела, имеющие упорядоченное периодически повторяющееся расположение частиц.

Структура, для которой характерно регулярное расположение частиц с периодической повторяемостью в тех измерениях, называется кристаллической решеткой.

Рисунок 53.1

Характерной особенностью кристаллов является их анизотропность – зависимость физических свойств (упругих, механических, тепловых, электрических, магнитных) от направления. Анизотропия кристаллов объясняется тем, что плотность расположения частиц по разным направлениям не одинакова.

Если кристаллическое тело состоит из единственного кристалла, оно называется монокристаллом. Если твердое тело состоит из множества беспорядочно ориентированных кристаллических зерен, оно называется поликристаллом. В поликристаллах анизотропия наблюдается только для отдельных мелких кристалликов.

Твердые тела, физические свойства которых одинаковы по всем направлениям (изотропны), называются аморфными. Для аморфных тел, как и для жидкостей, характерен ближний порядок в расположении частиц, но, в отличие от жидкостей, подвижность частиц в них довольномала.

Органические аморфные тела, молекулы которых состоят из большого числа одинаковых длинных молекулярных цепочек, соединенных химическими связями, называются полимерами (например, каучук, полиэтилен, резина).

В зависимости от рода частиц, расположенных в узлах кристаллической решетки и от характера сил взаимодействия между частицами, различают 4 физических типа кристалла:

Ионные кристаллы , например, NaCl . В узлах кристаллической решетки находятся ионы разных знаков. Связь между ионами обусловлена силами кулоновского притяжения и называется такая связь гетерополярной.

Атомные кристаллы , например, С (алмаз), Ge, Si . В узлах решетки находятся нейтральные атомы, удерживающиеся там благодаря ковалентным связям, возникающим за счет обменных сил, имеющих чисто квантовый характер.

Металлические кристаллы . В узлах кристаллической решётки располагаются положительные ионы металла. Валентные электроны в металлах слабо связаны со своими атомами, они свободно перемещаются по всему объёму кристалла, образуя так называемый «электронный газ». Он связывает между собой положительно заряженные ионы.

Молекулярные кристаллы , например, нафталин,- в твёрдом состоянии (сухой лёд). Они состоят из молекул, связанных между собой силами Ван-дер-Ваальса, т.е. силы взаимодействия индуцированных молекулярных электрических диполей.

§ 54. Изменение агрегатного состояния

И в жидкостях и в твердых телах всегда есть некоторое число молекул, энергия которых достаточна для преодоления притяжения к другим молекулам, и которые способны покинуть поверхность жидкости или твердого тела. Такой процесс для жидкости называется испарением (или парообразованием), для твердых тел – сублимацией (или возгонкой).

Конденсацией называется переход вещества вследствие его охлаждения или сжатия из газообразного состояния в жидкое.

Рисунок 54.1

Если число молекул, покидающих жидкость за единицу времени через единичную поверхность, равно числу молекул, переходящих из пара в жидкость, то наступает динамическое равновесие между процессами испарения и конденсации. Пар, находящийся в равновесии со своей жидкостью, называется насыщенным.

Плавлением называется переход вещества из кристаллического 9твердого) состояния в жидкое. Плавление происходит при определенной, возрастающей с увеличением внешнего давления, температуре плавления Т пл.

Рисунок 54.2

В процессе плавления теплота Q, сообщаемая веществу, идет на совершение работы по разрушению кристаллической решетки, и поэтому (рис. 54.2, а) до расплавления всего кристалла.

Количество теплоты L, необходимое для расплавления 1 кг вещества, называется удельной теплотой плавления .

Если жидкость охлаждать, то процесс пойдет в обратном направлении (рис. 54.2, б), - количество теплоты, отдаваемое телом при кристаллизации): сначала температура жидкости понижается, затем при постоянной температуре, равнойТ пл , начинается кристаллизация.

Для кристаллизации вещества необходимо наличие центров кристаллизации – кристаллических зародышей, которыми могут быть как кристаллики образующегося вещества, так и любые инородные включения. Если в чистой жидкости нет центров кристаллизации, то она может быть охлаждена до температуры, меньшей температуры кристаллизации, образуя, при этом переохлажденную жидкость (рис.б, - пунктир).

Аморфные тела являются переохлажденными жидкостями.

Если кристаллические решетки стереометрически (пространственно) одинаковы или сходны (имеют одинаковую симметрию), то геометрическое различие между ними заключается, в частности, в разных расстояниях между частицами, занимающими узлы решетки. Сами расстояния между частицами называются параметрами решетки. Параметры решетки, а также углы геометрических многогранников определяются физическими методами структурного анализа, например методами рентгеновского структурного анализа.

Источники

Литература

  • Химия: Справ. изд./ В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др.: Пер. с нем. - М.: Химия, 1989.
  • Курс общей физики, книга 3, И. В. Савельев: Астрель, 2001, ISBN 5-17-004585-9
  • Кристаллы / М. П. Шаскольская , 208 с ил. 20 см, 2-е изд., испр. М. Наука 1985

См. также

Ссылки

  • Кристаллы минералов , Формы природного растворения кристаллов
  • Единственный с своём роде завод, производящий Кристаллы

Wikimedia Foundation . 2010 .

Смотреть что такое "Кристаллические тела" в других словарях:

    Все, что признается реально существующим и занимающим часть пространства, носит название физического Т. Всякое физическое Т. образовано из вещества (см. Вещество) и представляет собой, согласно наиболее распространенному учению, совокупность… …

    Химия органического твердого тела (англ. organic sold state chemistry) – раздел химии твердого тела, изучающий всевозможные химические и физико химические аспекты органических твердых тел (ОТТ), в частности, – их синтез, строение, свойства,… … Википедия

    Раздел физики, изучающий структуру и свойства твердых тел. Научные данные о микроструктуре твердых веществ и о физических и химических свойствах составляющих их атомов необходимы для разработки новых материалов и технических устройств. Физика… … Энциклопедия Кольера

    Физика твёрдого тела раздел физики конденсированного состояния, задачей которого является описание физических свойств твёрдых тел с точки зрения их атомарного строения. Интенсивно развивалась в XX веке после открытия квантовой механики.… … Википедия

    Основная механическая величина, определяющая величину ускорения, сообщаемого телу данной силой. М. тел прямо пропорциональны силам, сообщающим им равные ускорения и обратно пропорциональны ускорениям, сообщаемыми им равными силами. Поэтому связь… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Химия твёрдого тела раздел химии, изучающий разные аспекты твердофазных веществ, в частности, их синтез, структуру, свойства, применение и др.. Ее объектами исследования являются кристаллические и аморфные, неорганические и органические… … Википедия

    Под этим названием известны соединения, которые можно рассматривать, как дигидроароматические углеводороды, в которых обе метиленные группы (СН2) замещены группами СО, т. е., следовательно, с этой точки зрения X. являются… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Сопротивление, оказываемое телом движению отдельной его части без нарушения связи целого. Такое движение составляет характеристику жидкостей, как капельных, так и упругих, т. е. газов. Малейшая сила приводит в движение часть жидкого тела и… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Сопротивление, оказываемое телом движению отдельной егочасти без нарушения связи целого. Такое движение составляетхарактеристику жидкостей, как капельных, так и упругих, т.е. газов.Малейшая Сила приводит в движение часть жидкого тела и вызывает … Энциклопедия Брокгауза и Ефрона

    - (хим.). Буквально гетерогенные системы значит разнородные, а гомогенные однородные системы; при этом, однако, есть ряд подразумеваемых допущений, почему вопрос заслуживает более подробного рассмотрения. Материя (Le Chatelier, An. d. m. , 9, 131… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Книги

  • Пробужденная аура. Развитие вашей внутренней энергии , Эмброуз Кала , Человечество вступает в новую эру - мы эволюционируем в сверхмогущественных созданий света. Наши энергетические тела переходят в новые кристаллические структурывнутри и вокруг нашей ауры.… Категория: Эзотерические знания Серия: Практическая магия Издатель: Феникс ,
  • Пробужденная аура Развитие вашей внутренней энергии Полное руководство по эволюционным изменениям происходящим с человеской аурой , Эмброуз К. , Человечество вступает в новую эру - мы эволюционируем в сверхмогущественных созданий света. Наши энергетические тела переходят в новые кристаллические структурывнутри и вокруг нашей ауры.… Категория:

4. . 5. . 6. . 7. .

Каждый может легко разделить тела на твердые и Жидкие. Однако это деление будет только по внешним признакам. Для того чтобы выяснить, какими же свойствами обладают твердые тела, будем их нагревать. Одни тела начнут гореть (дерево, уголь) - это органические вещества. Другие будут размягчаться (смола) даже при невысоких температурах - это аморфные. Особую группу твердых тел составляют такие, для которых зависимость температуры от времени нагревания представлена на рисунке 12. Это и есть кристаллические тела. Такое поведение кристаллических тел при нагревании объясняется их внутренним строением. Кристаллические тела - это такие тела, атомы и молекулы которых расположены в определенном порядке, и этот порядок сохраняется на достаточно большом расстоянии. Пространственное периодическое расположение атомов или ионов в кристалле называют кристаллической решеткой . Точки кристаллической решетки, в которых расположены атомы или ионы, называют узлами кристаллической решетки.

Кристаллические тела бывают монокристаллами и поликристаллами. Монокристалл обладает единой кристаллической решеткой во всем объеме.

Анизотропия монокристаллов заключается в зависимости их физических свойств от направления. Поликристалл представляет собой соединение мелких, различным образом ориентированных монокристаллов (зерен) и не обладает анизотропией свойств. Большинство твердых тел имеют поликристаллическое строение (минералы, сплавы, керамика).

Основными свойствами кристаллических тел являются: определенность температуры плавления, упругость, прочность, зависимость свойств от порядка расположения атомов, т. е. от типа кристаллической решетки.

Аморфными называют вещества, у которых отсутствует порядок расположения атомов и молекул по всему объему этого вещества. В отличие от кристаллических веществ аморфные вещества изотропны . Это значит, что свойства одинаковы по всем направлениям. Переход из аморфного состояния в жидкое происходит постепенно, отсутствует определенная температура плавления. Аморфные тела не обладают упругостью, они пластичны. В аморфном состоянии находятся различные вещества: стекла, смолы, пластмассы и т. п.

Упругость - свойство тел восстанавливать свою форму и объем после прекращения действия внешних сил или других причин, вызвавших деформацию тел. По характеру смещения частиц твердого тела происходящие при изменении его формы деформации делятся на: растяжение - сжатие, сдвиг, кручение и изгиб. Для упругих деформаций справедлив закон Гук, согласно которому упругие деформации прямо пропорциональны вызывающим их внешним воздействиям. Для деформации растяжения - сжатия закон Гука имеет вид: , где - механическое напряжение, - относительное удлинение, - абсолютное удлинение, - модуль Юнга (модуль упругости). Упругость обусловлена взаимодействием и тепловым движением частиц, из которых состоит вещество.