План-конспект урока по алгебре (5 класс) на тему: План урока Деление натуральных чисел

Деление – действие, обратное умножению, с его помощью по произведению и одному из множителей находится второй множитель.

Разделить число а на число b – это значит найти такое число, которое при умножении на число b дает число а :

а: b = с , если с · b = а .

Число а называется делимым, b – делителем, с – частным.

Если известный и искомый множители - натуральные однозначные числа, то неизвестный множитель находится по таблице умножения.

Деление натурального многозначного числа на натуральное однозначное число выполняется поразрядно, начиная со старшего разряда.

Если в старшем разряде делимого стоит число меньшее, чем делитель, то единицы старшего разряда переводятся в единицы соседнего младшего разряда и деление начинается с этого разряда.

Например, 896 разделим на 7.

  • 8 сотен делим на 7, получаем 1 сотню и одна сотня осталась.
  • Переводим оставшуюся сотню в десятки, добавляем 9 десятков из разряда десятков, получаем 19 десятков.
  • 19 десятков делим на 7, получаем 2 десятка , 5 десятков остается.
  • Переводим оставшиеся десятки в единицы, получаем 50 единиц, добавляем 6 единиц из разряда единиц, получаем 56 единиц.
  • 56 единиц делим на 7, получаем 8 единиц .

Значит, 896: 7 = 128 .

Обычно процесс деления записывают в «столбик».

Деление на натуральное многозначное число производится аналогично. При этом, в первое «промежуточное» делимое включается столько старших разрядов, чтобы оно получилось больше делителя.

Например, 1976 разделим на 26.

  • Число 1 в старшем разряде меньше 26, поэтому рассмотрим число, составленное из цифр двух старших разрядов – 19.
  • Число 19 также меньше 26, поэтому рассмотрим число, составленное из цифр трех старших разрядов – 197.
  • Число 197 больше 26, делим 197 десятков на 26: 197: 26 = 7 (15 десятков осталось).
  • Переводим 15 десятков в единицы, добавляем 6 единиц из разряда единиц, получаем 156.
  • 156 делим на 26, получаем 6.
Значит, 1976: 26 = 76.

Если на каком-то шаге деления «промежуточное» делимое оказалось меньше делителя, то в частном записывается 0, а число из данного разряда переводится в следующий, более младший разряд.

Пример: 3344: 16 = 209.

Деление натуральных чисел нацело (без остатка) не всегда выполнимо. Например, нельзя разделить 45 на 8, так как нет такого натурального числа, которое при умножении на 8 давало бы 45.

В таких случаях рассматривают деление с остатком.

Деление с остатком

Если нельзя произвести деление натуральных чисел нацело, то выполняют деление с остатком. При этом действии ищут наибольшее натуральное число, которое при умножении на делитель дает число, меньше делимого.

а: b = с (ост. d) , где с и d такие, что с · b + d = а , d .

Примеры:

17: 2 = 8 (ост. 1);
35: 3 = 11 (ост. 2);
493: 5 = 98 (ост. 3).

Деление многозначных натуральных чисел выполняется в «столбик», остаток записывается после частного в скобках.

284: 15 = 18 (ост. 14).

Деление с десятичной дробью в частном

Если натуральное число не делится нацело на однозначное натуральное число, можно продолжить поразрядное деление и получить в частном десятичную дробь.

Например, 64 разделим на 5.

  • 6 десятков делим на 5, получаем 1 десяток и 1 десяток в остатке.
  • Оставшийся десяток переводим в единицы, добавляем 4 из разряда единиц, получаем 14.
  • 14 единиц делим на 5, получаем 2 единицы и 4 единицы в остатке.
  • 4 единицы переводим в десятые, получаем 40 десятых.
  • 40 десятых делим на 5, получаем 8 десятых.
Значит, 64: 5 = 12,8

Таким образом, если при делении натурального числа на натуральное однозначное или многозначное число получается остаток, то можно поставить в частном запятую, остаток перевести в единицы следующего, меньшего разряда и продолжать деление.

Пример: 97: 25 = 3,88

Деление - это арифметическое действие обратное умножению, посредством которого узнаётся, сколько раз одно число содержится в другом.

Число, которое делят, называют делимым , число, на которое делят, называют делителем , результат деления называют частным .

Подобно тому, как умножение заменяет неоднократно повторяемое сложение, деление заменяет неоднократно повторяемое вычитание. Например, число 10 разделить на 2 - значит узнать, сколько раз число 2 содержится в 10:

10 - 2 - 2 - 2 - 2 - 2 = 0

Повторяя операцию вычитания 2 из 10, мы находим, что 2 содержится в числе 10 пять раз. Это легко проверить сложив пять раз 2 или умножив 2 на 5:

10 = 2 + 2 + 2 + 2 + 2 = 2 · 5

Для записи деления используется знак: (двоеточие), ÷ (обелюс) или / (косая черта). Он ставится между делимым и делителем, при этом делимое записывается слева от знака деления, а делитель - справа. Например, запись 10: 5 означает, что число 10 делится на число 5. Справа от записи деления ставят знак = (равно), после которого записывают результат деления. Таким образом, полная запись деления выглядит так:

Эта запись читается так: частное десяти и пяти равняется двум или десять разделить на пять равно два.

Также деление можно рассматривать как действие, посредством которого одно число делится на столько равных частей, сколько единиц содержится в другом числе (на которое делится). Таким образом определяется сколько единиц содержится в каждой отдельной части.

Например, у нас есть 10 яблок, разделив 10 на 2 мы получим две равные части, каждая из которых содержит 5 яблок:

Проверка деления

Для проверки деления можно частное умножить на делитель (или наоборот). Если в результате умножения получится число, равное делимому, то деление выполнено верно.

Рассмотрим выражение:

где 12 - это делимое, 4 - это делитель, а 3 - частное. Теперь выполним проверку деления, умножив частное на делитель:

или делитель на частное:

Деление также можно проверить делением, для этого надо делимое разделить на частное. Если в результате деления получится число, равное делителю, то деление выполнено правильно:

Основное свойство частного

У частного есть одно важное свойство:

Частное не изменится, если делимое и делитель умножить или разделить на одно и то же натуральное число.

Например,

32: 4 = 8, (32 · 3) : (4 · 3) = 96: 12 = 8 32: 4 = 8, (32: 2) : (4: 2) = 16: 2 = 8

Деление числа самого на себя и единицу

Для любого натурального числа a верны равенства:

a : 1 = a
a : a = 1

Число 0 в делении

При делении нуля на любое натуральное число получается нуль:

0: a = 0

Делить на нуль нельзя.

Рассмотрим, почему нельзя делить на нуль. Если делимое не нуль, а любое другое число, например 4, то разделить его на нуль значило бы найти такое число, которое после умножения на нуль даёт в результате число 4. Но такого числа нет, потому что любое число после умножения на нуль даёт снова нуль.

Если же делимое тоже равно нулю, то деление возможно, но частным может служить любое число, потому что в этом случае любое число после умножения на делитель (0) даёт нам делимое (т. е. снова 0). Таким образом, деление хоть и возможно, но не приводит к единственному определённому результату.

Однозначные натуральные числа легко делить в уме. Но как делить многозначные числа? Если в числе уже более двух разрядов, устный счет может занять много времени, да и вероятность ошибки при операциях с многоразрядными числами возростает.

Деление столбиком - удобный метод, часто применяемый для операции деления многозначных натуральных чисел. Именно этому методу и посвящена данная статья. Ниже мы рассмотрим, как выполнять деление столбиком. Сначала рассмотрим агоритм деления в столбик многозначного числа на однозначное, а затем - многозначного на многозначное. Помимо теории в статье приведены практические примеры деления в столбик.

Yandex.RTB R-A-339285-1

Удобнее всего вести записи на бумаге в клетку, так как при расчетах разлиновка не даст вам запутаться в разрядах. Сначала делимое и делитель записываются слева направо в одну строчку, а затем разделяются специальным знаком деления в столбик, который имеет вид:

Пусть нам нужно разделить 6105 на 55 , запишем:

Промежуточные вычисление будем записывать под делимым, а результат запишется под делителем. В общем случае схема деления столбиком выглядит так:

Следует помнить, что для вычислений понадобится свободное место на странице. Причем, чем больше разница в разрядах делимого и делителя, тем больше будет вычислений.

Например, для деления чисел 614 808 и 51 234 понадобится меньше места, чем для деления числа 8 058 на 4. Несмотря на то, что во втором случае числа меньше, разница в числе их разрядов больше, и вычисления будут более громоздкими. Проиллюстрируем это:

Практические навыки удобнее всего отрабатывать на простых примерах. Поэтому, разделим числа 8 и 2 в столбик. Конечно, данную операцию легко произвести в уме или по таблице умножения, однако провести подробный разбор будет полезно для наглядности, хоть мы и так знаем, что 8 ÷ 2 = 4 .

Итак, сначала запишем делимое и делитель согласно методу деления в столбик.

Следующим шагом нужно выяснить, сколько делителей содержит делимое. Как это сделать? Последовательно умножаем делитель на 0 , 1 , 2 , 3 . . Делаем это до тех пор, пока в результате не получится число, равное или большее, чем делимое. Если в результате сразу получается число, равное делимому, то под делителем записываем то число, на которое умножали делитель.

Иначе, когда получается число, большее чем делимое, под делителем записываем число, вычисленное на предпоследнем шаге.На место неполного частного записываем то число, на которое умножался делитель на предпоследнем шаге.

Вернемся к примеру.

2 · 0 = 0 ; 2 · 1 = 2 ; 2 · 2 = 4 ; 2 · 3 = 6 ; 2 · 4 = 8

Итак, мы сразу получили число, равное делимому. Записываем его под делимым, а число 4 , на которое мы умножали делитель, записываем на место частного.

Теперь осталось вычесть числа под делителем (также по методу столбика). В нашем случае 8 - 8 = 0 .

Данный пример - деление чисел без остатка. Число, получащееся после вычитания - это остаток деления. Если оно равно нулю, значит числа разделились без остатка.

Теперь рассмотрим пример, когда числа делятся с остатком. Разделим натуральное число 7 на натуральное число 3 .

В данном случае, последовательно умножая тройку на 0 , 1 , 2 , 3 . . получаем в результате:

3 · 0 = 0 < 7 ; 3 · 1 = 3 < 7 ; 3 · 2 = 6 < 7 ; 3 · 3 = 9 > 7

Под делимым записываем число, полученное на предпоследнем шаге. По делителем записываем число 2 - неполное частное, полученное на предпоследнем шаге. Именно на двойку мы умножали делитель, когда получили 6 .

В завершение операции вычитаем 6 из 7 и получаем:

Данный пример - деление чисел с остатком. Неполное частное равно 2 , а остаток равен 1 .

Теперь, после рассмотрения элементарых примеров, перейдем к делению многозначных натуральных чисел на однозначные.

Алгоритм деления столбиком будем рассматривать на примере деления многозначного числа 140288 на число 4 . Сразу скажем, что понять суть метода гораздо легче на практических примерах, и данный пример выбран не случайно, так как иллюстрирует все возможные нюансы деления натуральных чисел столбиком.

1. Запишем числа вместе с символом деления столбиком. Теперь смотрим на первую слева цифру в записи делимого. Возможны два случая: число, определяемое этой цифрой, больше, чем делитель, и наоборот. В первом случае мы работаем с этим числом, во втором - дополнительно берем следующую цифру в записи делимого и работаем с соответствующим двузначным числом. Согласно с этим пунктом, выделим в записе примера число, с которым будем работать первоначально. Это число - 14 , так как первая цифра делимого 1 меньше, чем делитель 4 .

2. Определяем, сколько раз числитель содержится полученном числе. Обозначим это число как x = 14 . Последовательно умножаем делитель 4 на каждый член ряда натуральных чисел ℕ , включая нуль: 0 , 1 , 2 , 3 и так далее. Делаем это, пока не получим в результате x или число, большее чем x . Когда в результате умножения получается число 14 , записываем его под выделенным числом по правилам записи вычитания в столбик. Множитель, на который умножался делитель, записываем под делітелем. Если в результате умножения получается число, большее чем x , то под выделенным числом записываем число, полученное на предпоследнем шаге, а на место неполного частного (под делителем) пишем множитель, на который на предпоследнем шаге проводилось умножение.

В соответствии с алгоритмом имеем:

4 · 0 = 0 < 14 ; 4 · 1 = 4 < 14 ; 4 · 2 = 8 < 14 ; 4 · 3 = 12 < 14 ; 4 · 4 = 16 > 14 .

Под выделенным числом записываем число 12 , полученное на предпоследнем шаге. На место частного записываем множитель 3 .


3. Столбиком вычитаем из 14 12 , результат записываем под горизонтальной чертой. По аналогии с первым пунктом сравниваем полученное число с делителем.

4. Число 2 меньше числа 4 , поэтому записываем под горизонтальной чертой после двойки цифру,расположенную в следующем разряде делимого. Если же в делимом более нет цифр, то на этом операция деления заканчивается. В нашем примере после полученного в предыдущем пункте числа 2 записываем следубщую цифру делимого - 0 . В итоге отмечаем новое рабочее число - 20 .

Важно!

Пункты 2 - 4 повторяются циклически до окончания операции деления натуральных чисел столбиком.

2. Снова посчитаем, сколько делителей содержится в числе 20 . Умножая 4 на 0 , 1 , 2 , 3 . . получаем:

Так как мы получили в результе число, равное 20 , записываем его под отмеченным числом, а на месте частного, в следубщем разряде, записываем 5 - множитель, на который проводилось умножение.

3. Проводим вычитание столбиком. Так как числа равны, получаем в результате число ноль: 20 - 20 = 0 .

4. Мы не будем записывать число ноль, так как данный этап - еще не окончание деления. Просто запомним место, куда мы могли его записать и запишем рядом число из следующего разряда делимого. В нашем случае - число 2 .

Принимаем это число за рабочее и снова выполняем пункты алгоритма.

2. Умножаем делитель на 0 , 1 , 2 , 3 . . и сравниваем результат с отмеченным числом.

4 · 0 = 0 < 2 ; 4 · 1 = 4 > 2

Соответственно, под отмеченным числом записываем число 0 , и под делителем в следующий разряд частного также записываем 0 .


3. Выполняем операцию вычитания и под чертой записываем результат.

4. Справа под чертой добавляем цифру 8 , так как это следующая цифра делимого числа.

Таким образом, получаем новое работчее число - 28 . Снова повторяем пункты алгоритма.

Проделав все по правилам, получаем результат:

Переносим под черту вниз последнюю цифру делимого - 8 . В последний раз повторяем пункты алгоритма 2 - 4 и получаем:


В самой нижней строчке записываем число 0 . Это число записывается только на последнем этапе деления, когда операция завершена.

Таким образом, результатом деления числа 140228 на 4 является число 35072 . Данный пример разобран очень подробно, и при решении практических заданий расписывать все действия столь досканально не нужно.

Приведем другие примеры деления чисел в столбик и примеры записи решений.

Пример 1. Деление натуральных чисел в столбик

Разделим натуральное число 7136 на натуральное число 9 .

После второго, третьего и четвертого шага алгоритма запись примет вид:

Повторим цикл:

Последний проход, и поучаем результат:

Ответ: Неполное неполное частное чисел 7136 и 9 равно 792 , а остаток равен 8 .

При решении практических примеров в иделе вообще не использовать пояснения в виде словесных комментариев.

Пример 2. Деление натуральных чисел в столбик

Разделим число 7042035 на 7 .

Ответ: 1006005

Алгоритм деления многозначных чисел в столбик очень похож на рассмотренный ранее алгорим деления многозначного числа на однозначное. Если быть точнее, изменения касаются только первого пункта, а пункты 2 - 4 остаются неизменными.
Если при делении на однозначное число мы смотрели только на первую цифру делимого, то теперь будем смотреть на столько цифр, сколько есть в делителе.Когда число, определяемое этими цифрами, больше делителя, принимам его за рабочее число. Иначе - добавляем еще одну цифру из следующего разряда делимого. Затем следуем пунктам описанного выше алгоритма.

Рассмотрим применение алгоритма деления многозначных чисел на примере.

Пример 3. Деление натуральных чисел в столбик

Разделим 5562 на 206 .

В записи делителя участвуют три знака, поэтому в делимом сразу выделим число 556 .
556 > 206 , поэтому принимаем это число за рабочее и переходим к пункту 2 аглоритма.
Умножаем 206 на 0 , 1 , 2 , 3 . . и получаем:

206 · 0 = 0 < 556 ; 206 · 1 = 206 < 556 ; 206 · 2 = 412 < 556 ; 206 · 3 = 618 > 556

618 > 556 , поэтому под делителем записываем результат предпоследнего действия, а под делимым - множитель 2

Выполняем вычитание столбиком

В результате вычитания имеем число 144 . Справа от результата под чертой записываем число из соответствующего разряда делимого и получаем новое рабочее число - 1442 .

Повторяем с ним пункты 2 - 4 . Получаем:

206 · 5 = 1030 < 1442 ; 206 · 6 = 1236 < 1442 ; 206 · 7 = 1442

Под отмеченным рабочим числом записываем 1442 , а в следующий разряд частного записываем цифру 7 - множитель.


Выполняем вычитание в столбик, и понимаем, что на этом операция деления окончена: в делителе более нет цифр, чтобы записать их правее от результата вычитания.

В завершение данной темы приведем еще один пример деления многозначных чисел в столбик, уже без пояснений.

Пример 5. Деление натуральных чисел в столбик

Разделим натуральное число 238079 на 34 .

Ответ: 7002

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Тема: Деление натуральных чисел (5 класс) учитель Голикова Татьяна

Георгиевна

Цель : повторить методику решения примеров на деление, таблицу

умножения, свойства деления, правила деления на разрядную единицу,

виды углов, «что значит решить уравнение», нахождение неизвестных

элементов уравнения;

развивать математическую речь, внимательность, кругозор,

познавательную активность, умение анализировать, делать

предположения, обосновывать их, классифицировать;

привитие умений и навыков практического применения математики,

чертёжных навыков;

развитие логического мышления, умения анализировать зависимость

между величинами, позитивного восприятия украинского

сохранение здоровья, умения оценить свои знания создание ситуации

успеха, ощущения «Я МОГУ», «У МЕНЯ ВСЁ ПОЛУЧИТСЯ»,

повышение самооценки, развитие внутренней активности через

эмоции и осмысление материала, осознания значимости знаний в жизни

человека.

Тип урока : отработка навыков и умений

Методы: объяснительно - иллюстративные, игровые, интерактивные

Формы : эвристическая беседа, работа в паре, взаимоконтроль, работа в малых группах, «я сам- все вместе», ролевая игра

Оборудование : интерактивная доска, карточки разных видов, маркер,

7 листов А4с маркировкой по цвету, скотч.

План урока

1. Духовно – эстетический 2мин

2. Мотивационный 3мин

3. Проверка домашнего задания 5мин

5. Физкультминутка 3мин

7. Домашнее задание2мин

8. Рефлексия 4мин

9.Оценочный 4мин

1 Духовно – эстетический

Всі рівненько діти встали.

Добрий день, прошу сідати

Для того, тобі настроиться на работу я предлагаю повторить таблицу умножения

Возьмите в руки карандаш, карточку и за 1,5 минуты решите предложенные примеры, а затем прочитайте слова в порядке возрастания чисел.

Найдите, какое число «сбежало» из ряда натуральных чисел?

Проверяем хором. Учитель называет число, а ученики слово.

6:3=2 27:9=3 16:4=4

Чтоб водить корабли,

30:6=5 42:6=7 72:9=8 36:4=9

Чтобы в небо взлетать

30:3=10 44:4=11 36:3=12

Нужно много уметь,

26:2=13 42:3=14 150:10=15

Нужно многое знать.

Пусть это четверостишье будет девизом сегодняшнего урока

2. Мотивационный

Предлагаю решить ребус на украинском языке

ЛЕДІНЕ, НИЛЬДІК, КАСЧАТ, ТОКБУДО

На сколько смысловых групп можно разделить эти понятия?

(Должны получить два варианта ответа, обосновать их)

Тема сегодняшнего урока ДЕЛЕНИЕ

Открыли тетради записали число, классная работа

3. Проверка домашнего задания. Актуализация знаний

Поменялись тетрадками и проверяем «уважаемые коллеги»

Есть ли не выполнившие д/з?

Кто обнаружил более двух ошибок?

Спасибо проверяющим, верните тетради соседям.

Какое правило встретилось при выполнении д/з?

Какие свойства вы ещё можете назвать?

4.1 задание 1

Я предлагаю отправиться в путешествие «В мире животных»

Возьмите карточки с примерами и решите их в тетрадках. Обратите внимание, что не все примеры решаются письменно, встречается деление на разрядную единицу.

На работу дается 4-5 мин. После выполнения учитель принимает ответы, сверяя их с соответствующей группой и пишет маркером на листах. Группы отвечают в любом порядке. Затее учитель предлагает упорядочить листы в нужном порядке, чтобы получить рассказ (Листы упорядочиваются как РАДУГА)

Красный Оранжевый Жёлтый Зелёный

1) 13000:1000; 1)120000:1000; 1) 300000:10000; 1) 35000:100;

2) 432:24; 2) 476:28; 2) 960:64; 2) 4485:23;

3) 11092:47 3) 6765:123. 3) 7956:234 3) 2790:62.

Голубой Синий Фиолетовый

1) 43000:1000; 1) 11000:100; 1) 1400000:100000;

2) 1856:64 ; 2) 1734:34; 2) 5166:63;

3) 9126:234. 3) 3608:164. 3) 3210:214.

Горилла спит 13000:1000= 13 часов в сутки, ежи по 432:24=18 часов в сутки, А в состоянии спячки без еды еж может обходиться 11092:47=236 суток

Оранжевый

Скорость рыбы – меч 120000:1000120км/ч, а скорость окуня

476:28=17 км/ч, а скорость акулы 6765: 12355 км/ч

Лошади живут до 300000:10000=30 лет, а собаки до 960:64=15лет, а рекорд жизни собаки составляет 7956:234=34 года

Вес белого медведя достигает 35000:100=350кг, голубого кита до 4485:23=195 т, а вес восточноевропейской овчарки 2790:62=45кг

У человека нормальная температура тела 36,6 0 , самая высокая из всех теплокровных у голубей и уток, до 43000:1000=43 0 , а самая низкая у муравьеда 1856:64=29 0 , температура тела собаки 9126:234= 39 0 .

Виноградная улитка выдерживает 11000:100=110 0 мороза, но погибает при 1734:34= 51 0 тепла. Комфортная для человека температура воздуха 3608:164=22 0

Фиолетовый

Длина большой анаконды, встречающейся в Южной Америке, может достигать 1400000:100000=14м, а в диаметре 5166:63= 82см. А постройки африканских термитов воинов достигают в высоту 3210:214=15м

4.2 задание 2.

Нет ничего страшного, если мы не знает ответ на какой-нибудь вопрос. Главное хотеть найти ответ. Мы с вами уже говорили, что если вы проболели или пропустили урок по какой-либо причине, или у вас что-то не получается- у нас есть замечательный помощник УЧЕБНИК! Мы с вами сейчас будем решать уравнения, если кто – то подзабыл, как найти неизвестный элемент уравнения, то не поленитесь прочитать стр124 учебника

Решите уравнения №470(3,4,6)

У окна №470(3)

Средний №470(4)

У двери №470(6)

По представителю с ряда решают уравнения. Дополнительное задание, для тех, кто быстро справился уравнение «Я МОЛОДЕЦ! »

«Я МОЛОДЕЦ! » (10х-4х)∙21=2268 .

№470(3) №470(4) №470(6)

Я молодец!

11х+6х=408; 33 m - m =1024 ; 476:х=14 (10х-4х)∙21=2268 .

х=24 m =32 х=34 х=18

Ключи к уравнениям

Х=204,Р=32, М=304, !=18; Ю=302, А=34, У=24, К=3.

Верные ответы «УРА!»

5. Физкультминутка

Щось втомились ми сидіти,

Треба трохи відпочити.

Руки вгору, руки вниз,

На сусіда подивись!

Руки вгору, руки в боки,

І зробить чотири скоки.

В потяг швидко усі сіли.

Ніжками затупотіли.

Плесніть у долоні раз.

За роботу. Все гаразд!

Выпрямили спины, положили руки на парту.

Для организации внимания игра «УГЛЫ»

Покажите острый угол, прямой, тупой, развёрнутый, 30 0 , 70 0 , 97 0 , 150 0 и тд., румб?

Задача №487

Читаем, составляем схему, анализируем, находим решение, записываем.

Просматриваем происходящее на слайде

Инсценируем с учениками.

Составляем таблицу

На 24 км меньше

1) 58∙4=232(км) проехал первый поезд

2) 232+24=256(км) проехал второй поезд

3) 256:4=64(км/ч)

Ответ: второй поезд ехал со скоростью 64 км/ч

7. Домашнее задание

С такой задачей дома справитесь? Давайте запишем д/з.

№ 488, №471(ІІй столбик), повторить правила решения уравнений, творческое задание (румб)

8. Рефлексия

Игра в Знайку и Незнайку

Знайка спрашивает Незнайку о свойствах деления, правилах нахождения элементов уравнения, как изменится частное, если…

И Незнайка отвечает!

У нас на столе остались неиспользованные листочки. На них изображены точки. На какой вид работы это похоже? (графический диктант)

Сколько точек на листочке? Сколько будет вопросов? Ответы напоминаю

«да» ; «нет» ; не уверен


· · · · · · · ·

1. Числа при делении называются делимое, делитель, частное

2. Я понял, что деление это совсем не сложно

3. Чтобы найти неизвестный делитель, надо делимое разделить на частное

4. Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель

5. Сегодня на уроке мне было интересно.

6. Я на уроке добросовестно работал.

7. Я горжусь собой.

По ряду помощники собирают карточки, а учитель объявляет отметки.

1) 13000:1000;

2) 432:24;

3) 11092:47.

1) 13000:1000;

2) 432:24;

3) 11092:47.

1) 13000:1000;

2) 432:24;

3) 11092:47.

1) 13000:1000;

2) 432:24;

3) 11092:47.

1)120000:1000;

2) 476:28;

3) 6765:123.

1)120000:1000;

2) 476:28;

3) 6765:123.

1)120000:1000;

2) 476:28;

3) 6765:123.

1)120000:1000;

2) 476:28;

3) 6765:123.

1) 300000:10000;

2) 960:64;

3) 7956:234.

1) 300000:10000;

2) 960:64;

3) 7956:234.

1) 300000:10000;

2) 960:64;

3) 7956:234.

1) 300000:10000;

2) 960:64;

3) 7956:234.

1) 35000:100;

2) 4485:23;

3) 2790:62.

1) 35000:100;

2) 4485:23;

3) 2790:62.

1) 35000:100;

2) 4485:23;

3) 2790:62.

1) 35000:100;

2) 4485:23;

3) 2790:62.

1) 43000:1000;

2) 1856:64;

3) 9126:234.

1) 43000:1000;

2) 1856:64;

3) 9126:234.

1) 43000:1000;

2) 1856:64;

3) 9126:234.

1) 43000:1000;

2) 1856:64;

3) 9126:234.

1) 11000:100;

2) 1734:34;

.3) 3608:164.

1) 11000:100;

2) 1734:34;

.3) 3608:164.

1) 11000:100;

2) 1734:34;

.3) 3608:164.

1) 11000:100;

2) 1734:34;

.3) 3608:164.

1) 1400000:100000;

2) 5166:63;

3) 3210:214.

1) 1400000:100000;

2) 5166:63;

3) 3210:214.

1) 1400000:100000;

2) 5166:63;

3) 3210:214.

1) 1400000:100000;

2) 5166:63;

3) 3210:214.

1) 13000:1000;

2) 432:24;

3) 11092:47.

1)120000:1000;

2) 476:28;

3) 6765:123.

1) 300000:10000;

2) 960:64;

3) 7956:234.

1) 35000:100;

2) 4485:23;

3) 2790:62.

1) 1400000:100000;

2) 5166:63;

3) 3210:214.

1) 11000:100;

2) 1734:34;

.3) 3608:164.

1) 43000:1000;

2) 1856:64;

3) 9126:234.

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

Отношение делимости. Если при делении с остатком натурального числа а на натуральное число b остаток равен 0, то говорят что а делится на b. В этом случае а называют кратным числа b, b называют делителем числа а.

Обозначение а:b

Запись символами (а,bN) (а:b)(сN) (а=вс).

Простое число. Натуральное число называют простым, если оно делится только на себя и на единицу, т.е если у него только два делителя.

Составное число. Натуральное число называют составным, если у него более двух делителей.

  • 1 не является ни простым, ни составным числом, т.к имеет только один делитель - себя.
  • 2 - единственное четное простое число.

Свойства отношения делимости:

  • 1. если а делится на b, то а?b.
  • 2. рефлексивность, т.е. каждое натуральное число делится само на себя.
  • 3. антисимметричность, т.е. если два числа не равны, и первое из них делится на второе, то второе не делится на первое.
  • 4. транзитивность, т.е. если первое число делится на второе число, второе число делится на третье число, то первое число делится на третье число.

Отношение делимости на N - это отношение частичного нестрогого порядка. Порядок частичный, т.к. есть такие пары разных натуральных чисел, ни одно из которых не делится на другое.

Признак делимости суммы на число. Если каждое слагаемое суммы делится на число, то вся сумма делится на это число (для того чтобы сумма делилась на число, достаточно, чтобы каждое слагаемое делилось на это число). Этот признак не является необходимым, т.е. если каждое слагаемое не делится на число, то вся сумма может делиться на это число.

Признак делимости разности на число. Если уменьшаемое и вычитаемое делятся на число и уменьшаемое больше вычитаемого, то разность делится на это число (для того чтобы разность делилась на число, достаточно, чтобы уменьшаемое и вычитаемое делились на это число, при условии, что эта разность положительна). Этот признак не является необходимым, т.е. уменьшаемое и вычитаемое могут не делиться на число, а их разность может делиться на это число.

Признак неделимости суммы на число. Если все слагаемые суммы, кроме одного, делятся на число, то сумма не делится на это число.

Признак делимости произведения на число. Если хотя бы один множитель в произведении делится на число, то произведение делится на это число (для того чтобы произведение делилось на число, достаточно, чтобы один множитель в произведении делился на это число). Этот признак не является необходимым, т.е. если ни один множитель в произведении не делится на число, то произведение может делиться на это число.

Признак делимости произведения на произведение. Если число а делится на число b, число с делится на число d, то произведение чисел а и с делится на произведение чисел b и d. Этот признак не является необходимым.

Признак делимости натуральных чисел на 2. Чтобы натуральное число делилось на 2, необходимо и достаточно, чтобы десятичная запись этого числа оканчивалась на одну из цифр 0, 2, 4, 6 или 8.

Признак делимости натуральных чисел на 5. Чтобы натуральное число делилось на 5, необходимо и достаточно, чтобы десятичная запись этого числа оканчивалась на 0 или на 5.

Признак делимости натуральных чисел на 4. Чтобы натуральное число делилось на 4, необходимо и достаточно, чтобы десятичная запись этого числа оканчивалась на 00 или две последние цифры в десятичной записи этого числа образовывали двузначное число, кратное 4.

Признак делимости натуральных чисел на 3. Чтобы натуральное число делилось на 3, необходимо и достаточно, чтобы сумма всех цифр десятичной записи этого числа делилась на 3.

Признак делимости натуральных чисел на 9. Чтобы натуральное число делилось на 9, необходимо и достаточно, чтобы сумма всех цифр десятичной записи этого числа делилась на 9.

Общий делитель натуральных чисел а и в - это натуральное число, которое является делителем каждого из этих чисел.

Наибольший общий делитель натуральных чисел а и в- это наибольшее натуральное число из всех общих делителей этих чисел.

Обозначение НОД (а, в)

Свойства НОД (а, в):

  • 1. всегда существует и только один.
  • 2. не превосходит меньшего из а и в.
  • 3. делится на любой общий делитель а и в.

Общее кратное натуральных чисел а и в - это натуральное число, кратное каждому из этих чисел.

Наименьшее общее кратное натуральных чисел а и в - это наименьшее натуральное число из всех общих кратных этих чисел.

Обозначение НОК (а, в)

Свойства НОК (а, в):

  • 1. всегда существует и только одно.
  • 2. не меньше большего из а и в.
  • 3. любое общее кратное а и в делится на него.

Взаимно простые числа. Натуральные числа а и в называют взаимно простыми, если у них нет общих делителей, кроме 1, т.е. НОД (а, в)=1.

Признак делимости на составное число. Чтобы натуральное число а делилось на произведение взаимно простых чисел m и n, необходимо и достаточно, чтобы число а делилось на каждое из них.

  • 1. Чтобы число делилось на 12, необходимо и достаточно, чтобы оно делилось на 3 и на 4.
  • 2. Чтобы число делилось на 18, необходимо и достаточно, чтобы оно делилось на 2 и на 9.

Разложение числа на простые множители- это представление этого числа в виде произведения простых множителей.

Основная теорема арифметики. Любое составное число можно единственным образом представить в виде произведения простых множителей.

Алгоритм нахождения НОД:

Записать произведение общих для данных чисел простых множителей, причем каждый множитель записать с наименьшим показателем, с каким он входит во все разложения.

Найти значение полученного произведения. Это и будет НОД данных чисел.

Алгоритм нахождения НОК:

Разложить каждое число на простые множители.

Записать произведение всех простых множителей из разложений, причем каждый из них записать с наибольшим показателем, с каким он входит во все разложения.

Найти значение полученного произведения. Это и будет НОК данных чисел.

Множество положительных рациональных чисел

Дробь. Пусть даны отрезок а и единичный отрезок е , который состоит из n отрезков, равных e .

Если отрезок а состоит из m отрезков, равных e . то его длина может быть представлена в виде

Символ называют дробью ; m, n - натуральные числа; m - числитель дроби, n - знаменатель дроби. n показывает, на сколько равных частей разделена единица измерения; m показывает, сколько таких частей содержится в отрезке a.

Равные дроби. Дроби, выражающие длину одного и того же отрезка в одной единице измерения, называют равными.

Признак равенства дробей.

Основное свойство дроби. Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится дробь, равная данной.

Сокращение дроби - это замена данной дроби другой, равной ей, но с меньшим числителем и знаменателем.

Несократимая дробь - это дробь, числитель и знаменатель которой взаимно простые числа, т.е. их НОД равен единице.

Приведение дробей к общему знаменателю - это замена данных дробей другими, равными им с равными знаменателями.

Положительное рациональное число - это бесконечное множество разных по написанию, но равных между собой дробей; каждая дробь этого множества есть форма записи этого положительного рационального числа.

Равные положительные рациональные числа - это числа, которые могут быть записаны равными дробями.

Сумма положительных рациональных чисел. Если положительное рациональное число a b представлено дробью, то их суммой с , представленное дробью.

Переместительное свойство сложения. От перемены мест слагаемых, значение суммы не меняется.

Сочетательное свойство сложения. Чтобы к сумме двух чисел прибавить третье, можно к первому числу прибавить сумму второго и третьего.

Существование суммы и её единственность. Каковы бы не были положительные рациональные числа a и b их сумма всегда существует и причем единственна.

Правильная дробь - дробь. числитель которой меньше знаменателя.

Неправильная дробь - дробь, числитель которой больше знаменателя или равен ему.

Неправильную дробь можно записать в виде натурального числа или в виде смешанной дроби.

Смешанная дробь - это сумма натурального числа и правильной дроби (принято записывать без знака сложения).

Отношение «меньше» на Q . Положительное рациональное число b меньше положительного рационального числа a, если существует положительное рациональное число c , которое в сумме с b дает a .

Свойства отношения «меньше».

  • 1. Антирефлексивность. Ни одно число не может быть меньше самого себя.
  • 2. Антисимметричность. Если первое число меньше второго, то второе не может быть меньше первого.
  • 3. Транзитивность. Если первое число меньше второго, а второе меньше третьего, то первое число меньше третьего.
  • 4. Связанность. Если два числа не равны, то либо первое меньше второго, либо второе меньше первого.

Отношение «меньше» на Q - это отношение строгого линейного порядка.

Разность положительных рациональных чисел. Разностью положительных рациональных чисел a и b называется положительное рациональное число c , которое в сумме с b дает a .

Существование разности. Разность чисел a и b существует тогда и только тогда, когда b меньше a .

Если разность существует, то она единственная.

Произведение положительных рациональных чисел. Если положительное рациональное число a представлено дробью, положительное рациональное число b представлено дробью, то их произведением называется положительное рациональное число с , представленное дробью.

Существование произведения и его единственность. Каковы бы не были положительные рациональные числа a и b их произведение всегда существует и причем единственно.

Переместительное свойство умножения. От перемены мест сомножителей значение произведения не меняется.

Сочетательное свойство умножения. Чтобы произведение двух чисел умножить на третье, можно первое число умножить на произведение второго и третьего.

Распределительное свойство умножения относительно сложения. Чтобы сумму чисел умножить на число, можно каждое слагаемое умножить на это число и полученные произведения сложить.

Частное положительных рациональных чисел. Частным положительных рациональных чисел a и b называется положительное рациональное число c, которое при умножении на b дает a .

Существование частного. Каковы бы не были положительные рациональные числа a и b , их частное всегда существует и причем единственное.

Множество Q и его свойства.

  • 1. Q линейно упорядоченно с помощью отношения «меньше».
  • 2. В Q нет наименьшего числа.
  • 3. В Q нет наибольшего числа.
  • 4. Q бесконечное множество.
  • 5. Q плотно в себе, т.е. меду любыми двумя разными положительными рациональными числами заключено бесконечное множество положительных рациональных чисел.

Запись положительных рациональных чисел в виде десятичных дробей.

Десятичная дробь - это дробь вида m/n , где m и n - натуральные числа.

Виды десятичных дробей. Конечные, бесконечные, периодические (чисто периодические и смешанно периодические), непериодические.

Конечная десятичная дробь - это дробь. в которой после запятой стоит конечное число цифр.

Бесконечная периодическая десятичная дробь - это дробь, которая получается бесконечным повторением одной и той же группой цифр, начиная с некоторого номера, а повторяющаяся группа цифр называется её периодом.

Чисто периодические и смешанно периодические дроби. Если период дроби начинается сразу после запятой, то эта дробь называется чисто периодической. Если между запятой и началом периода есть несколько цифр, то дробь называется смешано периодической.

Теорема. Любое положительное рациональное число может быть представлено либо в виде конечной десятичной дроби, либо бесконечной периодической десятичной дроби.

Перевод обыкновенной дроби в десятичную. Для перевода надо числитель делить на знаменатель в столбик. При делении получится либо конечная десятичная дробь, либо бесконечная периодическая.

Перевод конечной десятичной дроби в обыкновенную. Отбросить запятую, полученное число записать в числитель, а в знаменатель записать столько нулей после единицы, сколько цифр было после запятой.

Перевод чисто периодической дроби в обыкновенную. Период дроби записать в числитель, а в знаменатель записать столько девяток, сколько цифр в периоде.

Перевод смешанно периодической дроби в обыкновенную. В числитель записать разность между числом, стоящим между запятой и второй скобкой, и числом, стоящим между запятой и первой скобкой; в знаменатель записать столько девяток, сколько цифр в периоде, и столько нулей после них, сколько цифр между запятой и первой скобкой.

Теорема. Чтобы несократимую дробь можно было записать в виде конечной десятичной дроби, необходимо и достаточно, чтобы в разложение ее знаменателя на простые множители входили лишь числа 2 и 5.