Хроматографический анализ газа. Хроматографический анализ газов. Стационарный Выбор соединения

Этот метод позволяет выявить дефекты в силовых трансформаторах, а также во вводах на ранней стадии развития.

Лабораторные исследования, проведенные в ряде стран, а также анализ спектра газов в трансформаторах и вводах позволили установить характеристические газы, специфичные для того или иного вида повреждения: водород (Н 2), углеводородные газы: метан (СН 4); этилен (С 2 Н 4); этан (С 2 Н 6), двуокись углерода (СО 2) и окись углерода (СО), ацетилен (С 2 Н 2). Таким образом, по характеристическим газам можно предположить вид развивающегося дефекта. Газоадсорбционная хроматография основана на разделении компонентов газовой смеси при помощи различных адсорбентов - пористых веществ с сильно развитой поверхностью.

Выделенные из масла газы обычно анализируются газовым хроматографом с детектором по теплопроводности.

Структурная схема хроматографической установки приведена на рис.3.4.

1 - баллон с газом-носителем; 2 - устройство для введения пробы (дозатор); 3 - разделительная колонка; 4 - детектор; 5 - регистратор; 6 - устройство для извлечения газа из масла.

Процесс газовой хроматографии состоит из двух этапов: разделение анализируемой смеси на компоненты (качественный анализ) и определение их концентраций (количественный анализ).

Анализируемая смесь газов (проба) вводится в поток газа-носителя, который с постоянной скоростью пропускается через разделительную колонку, содержащую адсорбент. Различия в физико-химических свойствах отдельных газов смеси вызывают различия в скорости их продвижения через адсорбент (пористое вещество с сильно развитой поверхностью). Поэтому на выходе разделительной колонки будут последовательно появляться составляющие анализируемой пробы (в смеси с газом-носителем). Эти составляющие имеют различную теплопроводность, что позволяет, детектором формировать соответствующие сигналы, регистрируемые специальным устройством (обычно самопишущим потенциометром).

Последовательность (время) выхода из разделительной колонки конкретных газов известна (для данных условий анализа). Это дает информацию о составе анализируемой смеси. Для получения количественных данных интегратором определяется площадь пиков хроматограммы, которая на основании данных калибровки приводится к значениям концентрации соответствующих газов. Возможности разделения компонентов газовой смеси определяются характеристиками разделительной колонки: ее наполнителем (адсорбентом), длиной и температурным режимом.

Газ-носитель должен быть инертным по отношению к анализируемым веществам и примененным адсорбентам. Он также должен обеспечивать нормальную работу детектора.

Назначение детектора состоит в преобразовании поступающих на его вход отдельных компонентов газовой смеси в электрические сигналы, которые регистрируются на ленте электронного потенциометра в виде последовательно расположенных импульсов напряжения, получивших название хроматограммы.

Принцип действия часто применяемого детектора-катарометра основан на индикации изменения теплопроводности проходящих сквозь него газов (детектор по теплопроводности). Чувствительные элементы катарометра - резисторы расположены в камерах, по которым проходит поток газов. Два рабочих резистора обтекаются газом, выходящим из разделительной колонки; два других резистора - чистым газом-носителем. Резисторы включены в мостовую измерительную схему и нагреваются протекающим по ним током. При появлении в рабочей камере компонента анализируемой смеси, который изменяет теплопроводность газа в камере, изменяются условия теплопередачи от рабочих резисторов к ее стенке. При этом изменяются сопротивления рабочих резисторов и измерительный мост разбалансируется. Напряжение на диагонали моста, соответствующее концентрации данного компонента смеси, записывается регистратором.

Анализ извлеченной смеси газов производится по методике, определяемой типом примененного хроматографа и составом контролируемых газов. Результаты анализа регистрируются на диаграммной ленте. Состав анализируемой смеси определяется по времени и последовательности появления пиков на хроматограмме. Калибровка производится или эталонной смесью газов с известной концентрацией компонентов, или по одному газу (обычно азоту или воздуху) с соответствующим пересчетом по коэффициентам чувствительности.

Методика диагностики повреждений по хроматографическому анализу растворенных в масле газов является многокритериальной:

Если анализ газов показал состояние "опасности" или "повреждений", чаще проводится хроматографический контроль;

по характеристическим газам определяют вид развивающего дефекта;

по отношению концентраций газов этот дефект уточняется;

по скорости нарастания концентрации газов за определенный промежуток времени оценивается степень опасности развивающегося дефекта и даются рекомендации.

Преимущества метода ХАРГ: позволяет обнаружить довольно широкий класс дефектов, высокая вероятность совпадения прогнозируемого и фактического дефектов. В настоящее время применяют ХАРГ вместе с измерением tgд изоляции как основные методы диагностики вводов в процессе эксплуатации.

Недостатки: отбор масла под рабочим напряжением вводов невозможен вследствие особенностей конструкций их маслоотборных устройств. Необходимость частого отбора пробы масла неприемлема, особенно для герметичных конструкций.

Малый объем масла во вводах 110-220 кВ существенно затрудняет регулярный контроль путем отбора и анализа проб масла. Полная отдача сильфонов, компенсирующих температурное изменение объема масла в конструкциях серийных вводов 110-150 кВ, составляет 1,5-2,0 л, так что после отбора пробы (0,5 л) возникает необходимость последующего трудоемкого долива масла и соответствующего дорогостоящего приспособления. Характеристика пробы масла не всегда соответствует его фактическому состоянию в оборудовании, поскольку часть примесей может не попадать в пробу.

Методика выделения газов существенно влияет на точность определения концентраций контролируемых газов. Расхождения в методике выделения нередко являются причиной значительных расхождений в результатах анализа, проведенных в разных лабораториях. Кроме того, газосодержание масла конкретного ввода и скорость его изменения зависят от большого количества факторов. К ним относятся различия конструктивных материалов, режимы нагрузки, класс напряжения и т.п. Поэтому к граничным нормам следует относиться как к величине, отражающей компромисс между желанием выявить дефекты и затратами на контроль. Высокая чувствительность метода ХАРГ увеличивает вероятность ложной отбраковки, т.к. с учетом сравнительно небольшого объема масла во вводе, позволяет обнаружить дефект, который из-за малого его развития может и не приводить к аварийному повреждению ввода.

Эффективность контроля при этом в значительной мере определяется опытом персонала. Так, в частности, нормальное состояние ввода можно констатировать и в случае превышения нормы концентрации ряда газов, если скорости изменения этих концентраций малы. Однако при скорости изменения концентрации, превышающей нормированную предельную, малое абсолютное превышение концентрации не может быть признаком отсутствия дефекта.

Необходимо также отметить о сложности и высокой стоимости хроматогра-фической установки и трудности ее наладки и освоения.

Трансформаторы напряжением 110 кВ мощностью менее 60 МВА и блочные трансформаторы собственных нужд - через 6 мес. после включения и далее не реже 1 раза в 6 мес.;

Трансформаторы напряжением 110 кВ мощностью 60 МВА и более, а также все трансформаторы 220 - 500 кВ в течение первых суток, через 1, 3 и 6 мес. после включения и далее - не реже 1 раз в 6 мес.

Трансформаторы напряжением 750 кВ - в течение первых суток, через 2 недели, 1, 3 и 6 месяцев после включения и далее - не реже 1 раза в 6 мес.

Периодичность ХАРГ для трансформаторов с развивающимися дефектами определяется динамикой изменения концентраций газов и продолжительностью развития дефектов. Все дефекты в зависимости от продолжительности развития можно подразделить на:

мгновенно развивающиеся дефекты - продолжительность развития которых имеет порядок от долей секунды до минут,

быстро развивающиеся дефекты - продолжительность развития которых имеет порядок от часов до недель,

медленно развивающиеся дефекты - продолжительность развития которых имеет порядок от месяцев до нескольких лет.

Методом хроматографического анализа растворенных в масле газов обнаруживаются медленно развивающиеся дефекты, возможно - быстро развивающиеся дефекты и нельзя определить мгновенно развивающиеся дефекты.

В случае выявления дефекта (A i >A г pi . и/или V отн i > 10% в мес.) необходимо выполнить 2-3 повторных анализа растворенных газов (с периодичностью анализов, указанных в Разделе 3) для подтверждения вида и характера дефекта и принятия решения о дальнейшей эксплуатации трансформатора и/или выводе его из работы. Где A г pi .- граничная концентрация i -го газа, %об; A i - измеренное значение концентрации i -го газа, %об;

Минимальное время повторного отбора пробы масла (T id) для проведения анализа можно рассчитать по формуле:

Т id = β * М А i / V абс i (9)

Где β -коэффициент кратности последовательных измерений (принимать b = 5); М А i - предел обнаружения в масле i -го газа, %об;

Предел обнаружения определяемых в масле газов (М А i) должен быть не выше:

Для водорода - 0,0005 %об.

Для метана, этилена, этана - 0,0001 %об.

Для ацетилена - 0,00005 %об.

Для оксида и диоксида углерода - 0,002 %об.

(Методические указания для проведения лабораторных и контрольных работ по ХАРГ)

5.1. Если в результате анализа А i

5.2. Если в результате анализа A i >A г pi и V отн i

Проанализировать условия предшествующей эксплуатации трансформатора с учетом факторов, влияющих на изменение концентраций газов в нормально работающих трансформаторах

По критериям отношений концентраций пар характерных газов (Раздел 2, Таблица 3) установить вид и характер дефекта.

Определить время повторного отбора пробы масла (Раздел 4, формула 9) и провести ХАРГ.

5.3 Если в результате выполнения операций по п. 5.2 скорость V отн i растет, то трансформатор оставить на учащенном контроле с периодичностью ХАРГ, определяемой по формуле (9).

По данным последующих результатов ХАРГ выполнить мероприятия п.п. 5.1- 5.2 и определить V отн i .

5.4 Если при выполнении анализа следующего отбора получается неравенство

A i >A г pi и V отн i > 10% в месяц, а скорость V отн i продолжает увеличиваться (быстро развивающийся дефект), то планировать вывод трансформатора из работы.

5.5.Если же при выполнении анализа сохраняется неравенствоA i >A г pi , aV отн i остается постоянной и меньше 10% в мес., то для выяснения наличия повреждения рекомендуется провести дегазацию масла и выполнить несколько последовательных анализов.

5.6. Если после проведения дегазации концентрации газов меньше соответствующих граничных значений и не увеличиваются, то это свидетельствует об отсутствии повреждения. Такой трансформатор снимается с контроля, и дальнейшая периодичность отбора проб масла устанавливается один раз в 6 мес.

5.7. Если же после проведения дегазации масла вновь наблюдается рост концентрации растворенных газов при повторных ХАРГ со скоростью:

V отн i >10% в месяц, то следует планировать вывод трансформатора из работы;

5.8 Если A i >A rpi и V отн i ≤ 0, то следует проверить влияние эксплуатационных факторов согласно Раздела 4 и при их отсутствии можно предположить, что дефект развивается "вглубь" (выгорание контактов переключающих устройств, листов магнитопровода, металлических шпилек и т.д.). В этом случае необходимо планировать вывод трансформатора из работы.

Для РПН в навесных баках в целях определения возможного перетока газов вследствие нарушения герметичности между баками контактора и трансформатора необходимо отобрать одновременно пробу масла из баков контактора и трансформатора. Примеры решения задач по результатам ХАРГ представлены в Приложении 1.

Страница 5 из 9

Хроматографический анализ газов, растворенных в трансформаторном масле

Необходимость контроля за изменением состава масла в процессе эксплуатации трансформаторов ставит вопрос о выборе такого аналитического метода, который смог бы обеспечить надежное качественное и количественное определение содержащихся в трансформаторном масле соединений. В наибольшей степени этим требованиям отвечает хроматография, представляющая собой комплексный метод, объединивший стадию разделения сложных смесей на отдельные компоненты и стадию их количественного определения. По результатам этих анализов проводится оценка состояния маслонаполненного оборудования.

Хроматографический анализ газов, растворенных в масле, позволяет выявить дефекты трансформатора на ранней стадии их развития, предполагаемый характер дефекта и степень имеющегося повреждения. Состояние трансформатора оценивается сопоставлением полученных при анализе количественных данных с граничными значениями концентрации газов и по скорости роста концентрации газов в масле. Этот анализ для трансформаторов напряжением 110 кВ и выше должен осуществляться не реже 1 раза в 6 месяцев.

Основными газами, характеризующими определенные виды дефектов в трансформаторе, являются: водород Н 2 , ацетилен С 2 Н 2 , этан С 2 Н 6 , метан СН 4 , этилен С 2 Н 4 , окись СО и двуокись СО 2 углерода.

Водород характеризует дефекты электрического характера (частичные, искровые и дуговые разряды в масле); ацетилен - перегрев активных элементов; этан - термический нагрев масла и твердой изоляции обмоток в диапазоне температур до 300°С; этилен - высокотемпературный нагрев масла и твердой изоляции обмоток выше 300°С; окись и двуокись углерода - перегрев и разряды в твердой изоляции обмоток.

С помощью анализа количества и соотношения этих газов в трансформаторном масле можно обнаружить следующие дефекты в трансформаторе.

1. Перегревы токоведущих частей и элементов конструкции магнитопровода. Основные газы: этилен или ацетилен. Характерные газы: водород, метан и этан. Если дефектом затронута твердая изоляция, заметно возрастают концентрации окиси и двуокиси водорода.

Перегрев токоведущих частей может определяться: выгоранием контактов переключающих устройств; ослаблением крепления электростатического экрана; ослаблением и нагревом контактных соединений отводов обмотки низкого напряжения или шпильки проходного изолятора ввода; лопнувшей пайкой элементов обмотки; замыканием проводников обмотки и другими дефектами.

Перегрев элементов конструкции магнитопровода может определяться: неудовлетворительной изоляцией листов электротехнической стали; нарушением изоляции стяжных шпилек, ярмовых балок с образованием короткозамкнутого контура; общим нагревом и недопустимыми местными нагревами от магнитных полей рассеяния в ярмовых балках, бандажах, прессующих кольцах; неправильным заземлением магнитопровода и другими дефектами.

2. Дефекты твердой изоляции. Эти дефекты могут быть вызваны перегревом изоляции от токоведущих частей и электрическими разрядами в изоляции. При перегреве изоляции от токоведущих частей основными газами являются окись и двуокись углерода, их отношение СО2/СО, как правило, больше 13; характерными газами с малым содержанием являются водород, метан, этилен и этан; ацетилен, как правило, отсутствует.

При разрядах в твердой изоляции основными газами являются ацетилен и водород, а характерными газами любого содержания - метан и этилен. При этом отношение СО 2 /СО, как правило, меньше 5.

3. Электрические разряды в масле. Это частичные, искровые и дуговые разряды. При частичных разрядах основным газом является водород; характерными газами с малым содержанием - метан и этилен. При искровых и дуговых разрядах основными газами являются водород и ацетилен; характерными газами с любым содержанием - метан и этилен.

После выявления дефекта и его подтверждения не менее чем двумя-тремя последующими измерениями следует планировать вывод трансформатора из работы прежде всего с дефектами группы 2. Чем раньше выведен из работы трансформатор с развивающимся дефектом, тем меньше риск его аварийного повреждения и объем ремонтных работ.

Если по результатам диагностики трансформатор должен быть выведен из работы, но по каким-то объективным причинам это невозможно осуществить, его следует оставить на контроле с учащенным отбором проб масла и хромотографическим анализом газов.

Хроматографический анализ газов, растворенных в масле, позволяет выявлять не только развивающиеся дефекты в трансформаторе, но и общее состояние изоляции его обмоток. Объективным показателем, позволяющим оценить степень износа изоляции обмоток трансформатора, является степень ее полимеризации, снижение которой прямо характеризует глубину физико-химического разрушения (деструкции) изоляции в процессе эксплуатации. Деструкции целлюлозной изоляции сопутствует рост содержания в трансформатором масле окиси и двуокиси углерода и образование фурановых производных. В частности, наличие суммарной концентрации СО и СО2 более 1% может свидетельствовать о деградации целлюлозной изоляции. Образование фурановых производных является прямым следствием старения бумажной изоляции.

Метод жидкостной хроматографии позволяет определять и контролировать требуемое содержание в трансформаторном масле антиокислительных присадок, защищающих масло и другие изоляционные материалы трансформатора от старения.

Все документы, представленные в каталоге, не являются их официальным изданием и предназначены исключительно для ознакомительных целей. Электронные копии этих документов могут распространяться без всяких ограничений. Вы можете размещать информацию с этого сайта на любом другом сайте.

РОССИЙСКОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ
РАО «ЕЭС РОССИИ»

ДЕПАРТАМЕНТ НАУЧНО-ТЕХНИЧЕСКОЙ ПОЛИТИКИ И РАЗВИТИЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ
ПО ДИАГНОСТИКЕ
РАЗВИВАЮЩИХСЯ ДЕФЕКТОВ
ТРАНСФОРМАТОРНОГО ОБОРУДОВАНИЯ
ПО РЕЗУЛЬТАТАМ
ХРОМАТОГРАФИЧЕСКОГО АНАЛИЗА ГАЗОВ,
РАСТВОРЕННЫХ В МАСЛЕ

РД 153-34.0-46.302-00

МОСКВА, 2001

РАЗРАБОТАНО: Департаментом научно-технической политики и развития РАО «ЕЭС России», Научно-исследовательским институтом электроэнергетики (АО ВНИИЭ), раздел - совместно с ЗАО Московский завод «Изолятор» им. А. Баркова

ИСПОЛНИТЕЛИ: Ю.Н. Львов, Т.Е. Касаткина, Б.В. Ванин, М.Ю. Львов, В. С. Богомолов, Ю.М. Сапожников - (АО ВНИИЭ), С.Д. Кассихин, Б.П. Кокуркин, С.Г. Радковский, А.З. Славинский - (ЗАО «МОСИЗОЛЯТОР»), К.М. Антипов, В.В. Смекалов - (Департамент научно-технической политики и развития РАО «ЕЭС России»)

УТВЕРЖДАЮ: Начальник Департамента научно-технической политики и развития РАО «ЕЭС России»

Ю.Н. Кучеров

СПИСОК ИСПОЛЬЗОВАННЫХ ОБОЗНАЧЕНИЙ

М Ai - предел обнаружения в масле i-го газа, %об;

A 0 i - начальное значение концентрации i -г o газа, %об;

A i - измеренное значение концентрации i -г o газа, %об;

Агр i - граничная концентрация i -г o газа, %об;

a i - относительная концентрация i -г o газа;

a maxi - максимальная относительная концентрация i -г o газа;

F Li - интегральная функция распределения;

P Li - вероятность;

N- общее число трансформаторов;

L - интервал измерения концентрации i -г o газа;

n Li - число трансформаторов с концентрацией газа А (1-1) i

V абс i - абсолютная скорость нарастания i -г o газа, %об/мес;

Am i , A (m -1) i - два последовательных измерения концентрации i -г o газа, %об;

Td - периодичность диагностики, мес.;

V отн i - относительная скорость нарастания i -г o газа, %/мес;

b - коэффициент кратности последовательных измерений (принимать b = 5);

T 1 d - минимальное время до повторного отбора пробы масла, мес.;

Аг i - концентрация i -г o газа в равновесии с газовой фазой, %об;

B i - коэффициент растворимости i -г o газа в масле

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ДИАГНОСТИКЕ
РАЗВИВАЮЩИХСЯ ДЕФЕКТОВ ТРАНСФОРМАТОРНОГО
ОБОРУДОВАНИЯ ПО РЕЗУЛЬТАТАМ
ХРОМАТОГРАФИЧЕСКОГО АНАЛИЗА ГАЗОВ,
РАСТВОРЕННЫХ В МАСЛЕ

РД 153-34.0-46.302-00

Срок действия установлен

с 01.01.2001 г.

до 01.01.2011 г.

Настоящие Методические указания составлены на основе накопленного в России опыта применения «Методических указаний по диагностике развивающихся дефектов по результатам хроматографического анализа газов, растворенных в масле силовых трансформаторов» РД 34.46.302-89 (М: СПО Союзтехэнерго, 1989), с учетом рекомендаций публикации МЭК 599 и СИГРЭ и вводятся взамен упомянутого выше РД 34.46.302-89 и взамен противоаварийного циркуляра Ц-06-88(Э) «О мерах по повышению надежности герметичных вводов 110-750 кВ» от 27.07.1988 г.

Настоящие Методические указания распространяются на трансформаторы напряжением 110 кВ и выше, блочные трансформаторы, трансформаторы собственных нужд с любым видом защиты масла от атмосферы и высоковольтные герметичные вводы напряжением 110 кВ и выше, залитые трансформаторным маслом любой марки.

В Методических указаниях изложены: критерии диагностики развивающихся в трансформаторах дефектов (критерий ключевых газов, критерий граничных концентраций газов, критерий отношения концентраций пар газов для определения вида и характера дефекта, критерий скорости нарастания газов в масле); эксплуатационные факторы, влияющие на результаты АРГ; дефекты, обнаруживаемые в трансформаторах с помощью АРГ; основы диагностики эксплуатационного состояния трансформаторов по результатам АРГ; определение наличия дефекта в высоковольтных герметичных вводах по результатам анализа растворенных в масле газов.

Вероятность совпадения прогнозируемого и фактического дефектов в трансформаторах при использовании настоящих Методических указаний - 95 %.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1 Хроматографический анализ растворенных в масле газов проводится в соответствии с методикой «Методические указания по подготовке и проведению хроматографического анализа газов, растворенных в масле силовых трансформаторов» (РД 34.46.303-98), обеспечивающей:

1.1.1 Определение концентраций следующих газов, растворенных в масле: водорода (H 2 ), метана (СН 4), ацетилена (C 2 H 2), этилена (C 2 H 4), этана (C 2 H 6 ), оксида углерода (СО), диоксида углерода (CO 2).

Граничные концентрации растворенных в масле газов

Концентрации газов, %об.

Оборудование

Трансформаторы напряжением 110-500 кВ

Трансформаторы напряжением 750 кВ

Реакторы напряжением 750 кВ

* для СО - в числителе приведено значение для трансформаторов с азотной или пленочной защитами масла, в знаменателе - для трансформаторов со свободным дыханием; для СО 2 - в числителе приведены значения для трансформато ров со свободным дыханием при сроке эксплуатации до 10 лет, в знаменателе - свыше 10 лет, в скобках приведены те же данные для трансформаторов с пленочной или азотной защитами масла

5. ОПРЕДЕЛЕНИЕ ВИДА И ХАРАКТЕРА РАЗВИВАЮЩЕГОСЯ ДЕФЕКТА ПО КРИТЕРИЯМ ОТНОШЕНИЙ КОНЦЕНТРАЦИЙ ПАР ГАЗОВ

Вид и характер развивающихся в трансформаторе повреждений определяется по отношению концентраций следующих газов: Н 2 , СН 4 , С 2 Н 2 , С 2 Н 4 и С 2 Н 6 .

Основные хроматографические признаки дефекта

Механические примеси

Образование углеродосодержащих частиц вследствие разрядов - ацетилен. Появление незавершенных искровых разрядов - водород. Возможно отложение загрязнений по поверхностям и прорастание по ним разряда - водород и ацетилен.

Острые края деталей в масле

Появление незавершенных искровых разрядов - водород. Накопление продуктов деструкции масла по поверхностям и прорастание по ним разряда - водород и ацетилен.

Нарушение контактных соединений

Появление искрового разряда в масле - водород и ацетилен. Отложение продуктов деструкции масла по поверхностям и прорастание по ним разряда - водород и ацетилен. Накопление продуктов деструкции масла - водород и ацетилен.

Ослабление контактных соединений верхней контактной шпильки

Термическая деструкция масла (осмоление) - метан, этан.

Локальные дефекты остова

Микроразряды в остове - ацетилен и водород.

Литература

Рассчитаем величины абсолютных скоростей нарастания концентраций каждого газа:

Так как максимальная абсолютная скорость нарастания у водорода, то Т 1 d определяем по ней:

T 1 d = 5 ´ 5 ´ 10 4 /0,0125 = 0,2 мес., т.е. 6 дней

Фактически следующий отбор пробы масла и АРГ были проведены через 7 дней и получены следующие концентрации газов:

4-й анализ СО 2 = 0,15; СО = 0,02; СН 4 = 0,018; С 2 Н 4 = 0,051; С 2 Н 2 = 0,0035; С 2 Н 6 = 0,0053; Н 2 = 0,01.

По данным этого анализа в трансформаторе подтвердилось наличие быстроразвивающегося дефекта термического характера, не затрагивающего твердую изоляцию - «термический дефект высокой температуры, > 700 °С» и относящегося к 1 группе дефектов «Перегревы токоведущих соединений и элементов конструкции остова».

Трансформатор был выведен в ремонт. Во время ремонта в нем было обнаружено выгорание меди отвода обмотки 330 кВ, что подтвердило правильность поставленного диагноза.

В трансформаторе ТДТГ - 10000/110 после срабатывания газовой защиты на отключение (отбор пробы масла был проведен из бака трансформатора) определен следующий состав растворенных в масле газов (концентрации в %об.):

СО 2 = 0,45; СО = 0,04; СН 4 = 0,021; С 2 Н 4 = 0,027; С 2 Н 2 = 0,134; С 2 Н 6 = 0,006; Н 2 = 0,20.

Изрезультатов анализа следует, что концентрации метана и этилена более, чем в 2 раза превышают соответствующие граничные значения (табл. РД), концентрация водорода в 20 раз превышает граничное значение, а ацетилена - более, чем в 100 раз.

Анализ условий эксплуатации за предшествующий период показал, что отсутствуют факторы, которые могли бы вызвать рост концентраций углеводородных газов (п.).

По полученным концентрациям углеводородных газов определим характер развивающегося в трансформаторе дефекта по таблице текста РД:

На основании полученных данных прогнозируется дефект электрического характера - «разряды большой мощности».

Трансформатор был выведен в ремонт, в нем был обнаружен обрыв токопровода переключателя.

В трансформаторе ТДТН-31500/110 газовая защита сработала на сигнал.

Отобрали пробу газа из газового реле и пробу масла из бака трансформатора. Определили концентрации растворенных в масле газов и газа из газового реле; результаты анализов приведены в таблице:

Характеристика пробы

Концентрации газов, %об.

Масло из бака

Газ из реле, (Ас i)

Расчетное значение газа из реле, (Ari)

1. По концентрациям углеводородных газов в масле из бака трансформатора определим характер развивающегося в нем дефекта по таблице текста РД:

По критерию отношения в трансформаторе прогнозируется дефект электрического характера - дуговой разряд, затрагивающий твердую изоляцию.

2. По концентрациям газов, растворенных в масле бака трансформатора, рассчитаем концентрации этих же газов, соответствующих равновесному состоянию с газовой фазой (Ari ) по формуле РД и результаты расчета занесем в третью строку таблицы:

При сравнении концентраций Ari и Aci по каждому газу (строка 2 и 3 таблицы примера) получаем неравенство: Ari , т.е. можно заключить, что газ в реле выделился в неравновесных условиях в результате быстро развивающегося дефекта (дуговой разряд, затрагивающий твердую изоляцию).

Было дано заключение о выводе трансформатора из работы. При осмотре был обнаружен пробой витковой изоляции.

Приложение 3

ОПРЕДЕЛЕНИЕ ГРАФИЧЕСКИМ СПОСОБОМ РАЗВИВАЮЩИХСЯ В ТРАНСФОРМАТОРАХ ДЕФЕКТОВ ПО РЕЗУЛЬТАТАМ АРГ

Вид развивающихся в трансформаторах дефектов можно ориентировочно определить графически по основным газам: водороду, метану, этилену и ацетилену.

А. Построение графиков по относительным концентрациям.

Основной газ определяется по п. РД.

1. Для дефектов электрического характера основным газом может быть водород или ацетилен (п. текста РД).

На рис. - - изображены графики дефектов электрического характера.

2. Для дефектов термического характера (перегревы при плохих контактах, токах утечки, от магнитных полей рассеяния в ярмовых балках, бандажах, прессующих кольцах и винтах и т.п.) основным газом является метан или этилен в зависимости от температуры нагрева в зоне развития дефекта (см. п. текста РД).

На рис. - изображены графики дефектов термического характера. Графики строятся следующим образом:

По результатам хроматографического анализа масла (А i ) по формуле настоящих РД рассчитать относительные концентрации (a i ) водорода и углеводородных газов;

Определить основной газ в данном анализе (по расчетным относительным концентрациям максимальное значение a maxi соответствует основному газу);

Определить величину отношения a i / a maxi по углеводородным газам и водороду, причем для основного газа это отношение равно единице;

По оси X отложить пять равных отрезков и обозначить полученные точки соответствующими газами в следующей последовательности:

По оси Y отложить отрезок произвольной величины и обозначить его цифрой «1»;

Полученные точки соединить прямыми линиями;

Построенный график сравнить с графиками рис. - и определить характер дефекта.

При сравнении графиков необходимо учитывать модальность и основной газ.

Б. Построение графиков по абсолютным концентрациям

1. По результатам хроматографического анализа масла газ с максимальной концентрацией (Amax i ) принимается за основной газ.

2. Определить величину отношения измеренной концентрации газового компонента к максимальной концентрации (A i / Amax i ), причем для основного газа это отношение равно единице.

Рекомендуется для построения графиков использовать только такие результаты АРГ, в которых концентрации водорода и углеводородных газов в несколько раз превышают соответствующие граничные значения (при этом возможно отсутствие в масле ацетилена и/или наличие низких концентраций водорода).

Пример 1

В трансформаторе ТРДЦН-63000/110 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,004 %об, СН 4 = 0,084 %об, С 2 Н 2 = 0 %об, С 2 Н 4 = 0,02 %об, С 2 Н 6 = 0,011 %об, СО = 0,05 %об, СО 2 = 0,48 %об.

I ) для каждого газа:

а Н2 = 0,004/0,01 = 0,4, а СН4 = 0,084/0,01 = 8,4, а С2Н2 = 0, а С2Н4 = 0,02/0,01 = 2,0, а С2Н6 = 0,011/0,005 = 2,2

8,4 = а СН4 > а С2Н6 > а С2Н4 > а Н2 , т.е. основной газ - метан

Y для каждого газа

СН 4 = 1, Н 2 = 0,4/8,4 = 0,05, С 2 Н 4 = 2/8,4 = 0,24, С 2 Н 2 = 0, С 2 Н 6 = 2,2/8,4 = 0,26

4. Строим график (рис. РД):

Рис. 4.1. График дефекта термического характера в диапазоне средних температур, вызванного подгаром контактов избирателя

В автотрансформаторе АТДЦТГ-240000/220 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,01 %об, СН 4 = 0,09 %об, С 2 Н 2 = 0,008 %об, С 2 Н 4 = 0,167 %об, С 2 Н 6 = 0,03 %об, СО = 0,019 %об, СО 2 = 0,24 %об.

а i ) для каждого газа:

а Н2 = 0,01/0,01 = 1, а СН4 = 0,09/0,01 = 9, а С2Н2 = 0,008/0,001 = 8, а С2Н4 = 0,167/0,01 = 16,7, = 0,03/0,005 = 6,0

16,7 = а С2Н4 > а СН4 > а С2Н2 > а С2Н6 > а Н2 , т.е. основной газ - этилен.

Для каждого газа

С 2 Н 4 = 1, Н 2 = 1/16,7 = 0,06, СН 4 = 9/16,7 = 0,54, С 2 Н 2 = 8/16,7 = 0,45, С 2 Н 6 = 6,0/16,7 = 0,36

4. Строим график (рис.).

5. По основному газу С 2 Н 4 находим график рис. , Приложение, похожий на построенный график (рис.). Следовательно, в автотрансформаторе по данным АРГ прогнозируется дефект термического характера - высокотемпературный перегрев масла.

СО 2 /СО = 0,24/0,019 = 12,6, следовательно, дефектом не затронута твердая изоляция.

Автотрансформатор проработал еще 4 мес. и был выведен в ремонт.

Во время ремонта в нем было обнаружено замыкание прессующего кольца обмотки СН на прессующее кольцо обмотки НН через упавший стакан домкрата.

Рис. 4.2. График дефекта термического характера - высокотемпературный перегрев, вызванный короткозамкнутым контуром в остове

Пример 3

В автотрансформаторе АТДЦТН-250000/500 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,03 %об, СН 4 = 0,18 %об, С 2 Н 2 = 0 %об, С 2 Н 4 = 0,3 %об, С 2 Н 6 = 0,043 %об, СО = 0,016 %об, СО 2 = 0,19 %об.

) для каждого газа:

а Н2 = 0,03/0,01 = 3, а СН4 = 0,18/0,01 = 18, а С2Н2 = 0, а С2Н4 = 0,3/0,01 = 30, а С2Н6 = 0,043/0,005 = 8,6

2. По полученным относительным концентрациям определяем основной газ:

30 = а С2Н4 > а СН4 > а С2Н6 > а Н2 , т.е. основной газ - этилен.

Y для каждого газа

С 2 Н 4 = 1, Н 2 = 3/30 = 0,1, СН 4 = 18/30 = 0,6, С 2 Н 2 = 0, С 2 Н 6 = 8,6/30 = 0,29

4. Строим график (рис.).

5. По основному газу С 2 Н 4 находим график рис. , Приложение, похожий на построенный график (рис.). Следовательно, в автотрансформаторе по данным АРГ прогнозируется дефект термического характера - высокотемпературный перегрев масла.

СО 2 /СО = 0,19/0,016 = 11,9

Рис. 4.3. График дефекта термического характера - высокотемпературный нагрев (> 700 °С), вызванный касанием нижней консоли с шипом

Пример 4

В трансформаторе ТДТН-40000/110 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,011 %об, СН 4 = 0,036 %об, С 2 Н 2 = 0 %об, С 2 Н 4 = 0,152 %об, С 2 Н 6 = 0,039 %об, СО = 0,04 %об, СО 2 = 0,45 %об.

) для каждого газа:

а Н2 = 0,011/0,1 = 1,1, а СН4 = 0,036/0,01 = 3,6, а С2Н2 = 0, а С2Н4 = 0,152/0,01 = 15,2, а С2Н6 = 0,039/0,005 = 7,8

2. По полученным относительным концентрациям определяем основной газ:

15,2 = а С2Н4 > а С2Н6 > а СН4 > а С2Н6 > а Н2 , т.е. основной газ - этилен.

3. Определяем величины отрезков по оси Y для каждого газа

С 2 Н 4 = 1, Н 2 = 1,1/15,2 = 0,072, СН 4 = 3,6/15,2 = 0,24, С 2 Н 2 = 0, С 2 Н 6 = 7,8/15,2 = 0,5

4. Строим график (рис.).

5. По основному газу С 2 Н 4 находим график рис. , Приложение, похожий на построенный график (рис.). Следовательно, в трансформаторе по данным АРГ прогнозируется дефект термического характера - высокотемпературный перегрев масла.

6. Для решения вопроса, затронута ли дефектом твердая изоляция, определим отношение концентраций СО 2 /СО:

СО 2 /СО = 0,45/0,04 = 11,25

Рис. 4.4. График дефекта термического характера - высокотемпературный нагрев (> 700 °С), вызванный подгаром контактов переключателя

Пример 5

В автотрансформаторе ОДТГА-80000/220 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,097 %об, СН 4 = 0,019 %об, С 2 Н 2 = 0,013 %об, С 2 Н 4 = 0,024 %об, С 2 Н 6 = 0,0023 %об, СО = 0,064 %об, СО 2 = 0,27 %об.

1. Определяем относительные концентрации (а i ) для каждого газа:

а Н2 = 0,097/0,01 = 9,7, а СН4 = 0,019/0,01 = 1,9, а С2Н2 = 0,013/0,001 = 13 , а С2Н4 = 0,024/0,01 = 2,4, а С2Н6 = 0,0023/0,005 = 0,46

2. По полученным относительным концентрациям определяем основной газ:

5.3 . РД), следовательно, дефектом затронута твердая изоляция.

Автотрансформатор был выведен в ремонт. Во время ремонта в нем было обнаружено: выгорание изоляции шпилек, касание стягивающих шпилек консоли, выгорание металла шпильки.

Рис. 4.5. График дефекта электрического характера (дуга), вызванного короткозамкнутым контуром в остове

Пример 6 (см. Приложение, пример для случая, когда газовая защита сработала на отключение)

В трансформаторе ТДТГ-10000/110 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,20 %об, СН 4 = 0,021 %об, С 2 Н 2 = 0,134 %об, С 2 Н 4 = 0,027 %об, С 2 Н 6 = 0,0006 %об, СО = 0,04 %об, СО 2 = 0,45 %об.

1. Определяем относительные концентрации (а i ) для каждого газа:

а Н2 = 0,20/0,01 = 20, а СН4 = 0,021/0,01 = 2,1, а С2Н2 = 0,134/0,001 = 134 , а С2Н4 = 0,027/0,01 = 2,7, а С2Н6 = 0,0006/0,005 = 0,12

2. По полученным относительным концентрациям определяем основной газ:

134 = а С2Н2 > а Н2 > а С2Н4 > а СН4 > а С2Н6 , т.е. основной газ - ацетилен

3. Определяем величины отрезков по оси Y для каждого газа

С 2 Н 2 = 1, Н 2 = 20/134 = 0,15, СН 4 = 2,1/134 = 0,016, С 2 Н 6 = 0,12/134 = 0,12, С 2 Н 4 = 2,7/134 = 0,02

4. Строим график (рис.).

5. По основному газу С 2 Н 2 находим график рис. , Приложение, похожий на построенный график (рис.). Следовательно, в трансформаторе по данным АРГ прогнозируется дефект электрического характера - дефект, вызванный дугой.

6. Для решения вопроса, затронута ли дефектом твердая изоляция, определим отношение концентраций СО 2 /СО:

СО 2 /СО = 0,45/0,04 = 11,25

Во время ремонта в нем обнаружили обрыв токопровода переключателя.

Рис. 4.6. График дефекта электрического характера (дуга)

Пример 7

В трансформаторе ТДТН-63000/110 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,053 %об, СН 4 = 0,02 %об, С 2 Н 2 = 0,0013 %об, С 2 Н 4 = 0,049 %об, С 2 Н 6 = 0,009 %об (концентрации оксида и диоксида углерода не определялись).

1. Определяем относительные концентрации (a i ) для каждого газа:

а Н2 = 0,053/0,01 = 5,3, а СН4 = 0,02/0,01 = 2,0, а С2Н2 = 0,0013/0,001 = 1,3 , а С2Н4 = 0,049/0,01 = 4,9, а С2Н6 = 0,009/0,005 = 1,8

2. По полученным относительным концентрациям определяем основной газ:

5,3 = а Н2 > а С2Н4 > а СН4 > а С2Н6 > а С2Н2 , т.е. основной газ - водород

3. Определяем величины отрезков по оси

Рис. 4.7. График дефекта электрического характера (искрение)

Пример 8

В трансформаторе ТДЦ-400000/330 по результатам АРГ получили следующие концентрации растворенных в масле газов:

Н 2 = 0,27 %об, СН 4 = 0,025 %об, С 2 Н 2 = 0,024 %об, С 2 Н 4 = 0,030 %об, С 2 Н 6 = 0,007 %об (концентрации оксида и диоксида углерода не определялись).

1. Определяем относительные концентрации (a i ) для каждого газа:

а Н2 = 0,27/0,01 = 27,0, а СН4 = 0,025/0,01 = 2,5, а С2Н2 = 0,024/0,001 = 24,0 , а С2Н4 = 0,030/0,01 = 3,0, а С2Н6 = 0,007/0,005 = 1,4

2. По полученным относительным концентрациям определяем основной газ:

27 = а Н2 > а С2Н2 > а С2Н4 > а СН4 > а С2Н62 , т.е. основной газ - водород

3. Определяем величины отрезков по оси

1.3. ГАЗОВАЯ ХРОМАТОГРАФИЯ (ОФС 42-0095-09)

Газовая хроматография – это метод колоночной хроматографии, в котором подвижной фазой служит газ, движущийся через колонку, заполненную неподвижной фазой.

Применяют как газоадсорбционную, так и газожидкостную (преимущественно) хроматографию.

Анализ проводят на специальных приборах – газовых хроматографах.

Основные узлы газового хроматографа: источник подвижной фазы, устройство ввода пробы, колонка с термостатом, детектор, система сбора и обработки данных. Требуемые температурные режимы устройства ввода пробы, колонки и детектора устанавливаются в соответствующих термостатах.

Подвижная фаза

В качестве подвижной фазы используются азот, гелий или водород. Эти газы-носители могут подаваться в систему либо из баллонов, либо из газогенераторов, позволяющих получать газ высокой чистоты. Газ проходит через блок регулировки и стабилизации потока газа, обеспечивающий возможность измерения его скорости и давления на входе в хроматограф.

Ввод пробы

Наиболее распространен способ ввода жидкой пробы (раствора) в испаритель шприцем через самоуплотняющуюся мембрану. Однако хроматограф может быть укомплектован дозатором (в том числе, автоматическим) для ввода газообразных, жидких или твердых веществ.

Инжектирование методом выдувания и накопления(purge and trap) используется для извлечения легколетучих компонентов и накопления их в специальной адсорбционной ловушке (колонке) с последующей быстрой тепловой десорбцией и вводом в хроматографическую колонку.

Устройство парофазного концентрирования (head-space) позволяет повысить чувствительность определения летучих соединений.

Колонки

Используются три типа аналитических колонок: насадочные (набивные), микронасадочные и капиллярные.

Насадочные колонки (НК) изготавливаются из металла (нержавеющая сталь, никель, медь), стекла, тефлона и других материалов. Для разделения неустойчивых соединений (каталитически разлагающихся при контакте с металлической поверхностью) используют стеклянные или тефлоновые колонки. По форме НК бывают прямые, U-образные, W-образные и спиральные. Внутренний диаметр НК составляет от 2 до 4 мм, а длина – от 1 до 4–5 м. Внутренний диаметр микронасадочных колонок 0,5–1 мм и длина от 0,5 до 3 м.

Капиллярные колонки изготавливаются из кварца и имеют форму спирали. По своим характеристикам (внутреннему диаметру, d ) они делятся на капиллярные (d = 0,2–0,3 мм, длина от 5 до 100 м), узкие капиллярные (d = 0,05–0,2 мм, длина от 5 до 100 м), капиллярные широкого диаметра (d = 0,3–0,8 мм, длина от 10 до 60 м) и поликапиллярные (d = 0,04 мм, длина 0,2 или 1 м).

В насадочных и микронасадочных колонках набивка сорбента внутри трубки должна быть плотной и однородной, без пустот. Чем плотнее и однороднее набивка, тем меньше размывание пиков и больше эффективность колонки.

В капиллярных колонках слой сорбента наносится на внутреннюю поверхность капилляра в виде слоя жидкой неподвижной фазы или в виде слоя адсорбента толщиной от 0,1 до 5,0 мкм, роль которого чаще всего выполняет полимерная пленка. В зависимости от характеристик капиллярных колонок и концентрации анализируемых соединений в образце введение пробы в колонку осуществляется с делением потока или без деления потока.

Системы программирования температуры колонки позволяют улучшить разрешение и сократить время анализа.

Детекторы

Наиболее важные характеристики детекторов – чувствительность, линейный динамический диапазон (диапазон концентраций определяемого вещества, в котором наблюдается линейная зависимость сигнала детектора от концентрации) и селективность.

Чаще всего применяют пламенно-ионизационный детектор (ПИД). Это обусловлено его высокой чувствительностью к большинству органических соединений и чрезвычайно широким линейным динамическим диапазоном (6–7 порядков), что крайне важно при проведении количественных анализов. Применяют также детекторы других типов – детектор по теплопроводности (катарометр), термоионный (ТИД), электронно-захватный (ЭЗД), масс-спектрометрический. В зависимости от конкретной задачи могут быть использованы и детекторы других типов – пламенно-фотометрический, фотоионизационный, Фурье-инфракрасный и др.

чувствительность ТИД по отношению к азот- и фосфорсодержащим соединениям выше чувствительности ПИД примерно на 2 и 3 порядка, соответственно.

ЭЗД – высокоселективный детектор, чувствительный к соединениям, содержащим галогены, серу, фосфор, нитраты, кислород.

н еподвижные фазы

В газоадсорбционной хроматографии в качестве сорбентов (адсорбентов) используют неорганические (силикагель – Сферосил, Порасил, Силихром и др.; графитированная термическая сажа – Карбопак С и В, Карбосив, Карбосфер; молекулярные сита – алюмосиликаты натрия и кальция) и пористые полимерные сорбенты.

В газожидкостной хроматографии неподвижная фаза (сорбент) представляет собой жидкость, нанесенную на твердый носитель. Носитель – относительно инертный адсорбент с низкой удельной поверхностью, на которой должна удерживаться неподвижная фаза в виде пленки равномерной толщины. Носитель должен быть механически прочным, иметь по возможности сферическую форму и макропористую структуру. Применяют минеральные и полимерные носители. Большинство минеральных носителей представляют собой переработанные диатомиты. Обычно используются носители с размерами частиц в интервалах от 125 до 150 мкм или от 150 до 180 мкм.

Неподвижные фазы – это обычно высококипящие жидкости. Они различаются по температурному пределу использования (низкотемпературные – до 100 С; среднетемпературные – до 200 С; высокотемпературные – до 350 °С) и по полярности. Все неподвижные фазы делят на 4 группы – неполярные, слабополярные, среднеполярные и сильнополярные.

По химическому составу неподвижные фазы в своем большинстве принадлежат к следующим классам: алифатические и ароматические углеводороды; фталаты и фосфаты; простые и сложные эфиры, полиэфиры; полигликоли; силоксаны с неполярными, среднеполярными и полярными радикалами; нитрилы и нитрилэфиры. Разработаны также привитые неподвижные фазы, которые представляют собой нанесенную химическим путем почти монослойную пленку. Такие сорбенты называются бондапаками. Они характеризуются высокой термостойкостью, большей инертностью и обеспечивают более высокую эффективность колонок по сравнению с другими сорбентами.

Методика

В описании методики должны быть указаны: тип детектора, тип колонки (насадочная или капиллярная), материал и размеры колонки, сорбент (тип твердого носителя и его характеристики, неподвижная жидкая фаза и ее количество), метод введения пробы и его параметры, температура испарителя, колонки и детектора, газ-носитель и его расход.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Хроматография газов

1. Общие сведения о хроматографии

Физико-химическая сущность любого хроматографического метода анализа газовых смесей состоит в селективной сорбции компонентов смеси твердыми или жидкими поглотителями с последующей их раздельной десорбцией при помощи инертного к данному сорбенту газа-носителя.

Анализ проводится в трубках (колонках), наполненных сорбентом. Анализируемый газ вводится в колонку через дозаторы в потоке газа-носителя. Так как газ-носитель инертен к веществу сорбента, то он, не задерживаясь, выходит из колонки, а компоненты исследуемой газовой смеси, обладая различным сродством к сорбенту, распределяются по длине колонки на отдельные зоны в порядке уменьшения сорбционной способности. Обозначим компоненты газовой смеси А, Б, В а газ-носитель П.

Процесс сорбции обратим. При определенных условиях может произойти десорбция. Для проведения десорбции необходимо, чтобы зоны сорбированных веществ двигались по колонке. Это достигается промывкой колонки газом-носителем. Необходимо учесть, что помимо чисто физического воздействия потока газа-носителя, при его пропускании через колонку резко снижается концентрация компонентов газовой смеси над зонами сорбции. Это и способствует десорбции, а следовательно, и выносу компонентов газом-носителем из колонки. Таким образом, во время движения газа-носителя через колонку происходит распределение компонентов анализируемой смеси между подвижной и неподвижной фазами. Очевидно, что десорбция компонентов газа будет осуществляться в порядке, обратном их сорбционной активности. Иначе говоря, отдельные компоненты газа будут двигаться по колонке с различными скоростями и их время удерживания в колонке будет тоже различным.

Представленная упрощенная схема достаточно наглядно показывает, что на выходе из колонки вполне возможно разделение, а следовательно, и фиксация отдельных компонентов газовой смеси. Практика показывает, что это достигается даже при хроматографировании смесей, содержащих компоненты, весьма близкие по химическим и физическим свойствам.

Хроматографический метод разделения веществ, впервые предложенный еще в 1903 г. русским ботаником М.С. Цветом, в настоящее время получил исключительно широкое распространение при анализе самых различных сложных смесей веществ, находящихся в любом агрегатном состоянии. В качестве примера можно указать, что в практику исследовательских и заводских нефтеперерабатывающих и нефтехимических предприятий внедрены хроматографические методы анализа для определения содержания:

1) углеводородов С 2 -С 5 в сырой нефти;

2) предельных и непредельных углеводородов, а также неуглеводородных компонентов (Н 2 , 0 2 , N 2 , СО, С0 2 , H 2 S) в сухом газе при любых соотношениях;

3) предельных и непредельных углеводородных газов во фракции С4 (при контроле производства бутадиена из бутана);

4) различных углеводородов в прямогонных бензинах и во фракциях вторичного происхождения;

5) сероводорода в газах;

6) микропримесей сероорганических соединений (сероуглерода, метил- и этилмеркаптанов, тиофена, некоторых сульфидов) в сырье для каталитических процессов при. суммарной концентрации до 100 мг/м 3 ;

7) целевых синтетических жирных кислот во фракциях С5 - С6, С7-С9, С9-; С10, С10-С13;

8) примесей в нефтяном бензоле;

9) основного вещества в нефтяном ксилоле и многих других компонентов нефтепродуктов, кипящих до 350 °С.

Существует несколько разновидностей хроматографического анализа, но все они основаны на том же принципе распределения компонентов анализируемой смеси между двумя несмешивающимися фазами: неподвижной и подвижной. Неподвижной фазой является твердый или жидкий сорбент, а подвижная фаза (газ или Жидкость) пропускается через колонку с сорбентом, участвуя в переносе разделяемых компонентов. Если подвижная фаза - газ, то хроматография называется газовой, если подвижная фаза - Жидкость, хроматография называется жидкостной.

При анализе жидких смесей могут быть использованы оба варианта хроматографического метода. Наибольшее распространение при исследовании жидких смесей, кипящих до 350 °С и неразлагающихся при этих температурах, получило хроматографирование их в газовой фазе (с предварительным испарением). Высокомолекулярные вещества с температурой кипения более 350 °С хроматографируются в жидкой фазе.

Газовая хроматография в свою очередь разделяется на газоадсорбционную и газожидкостную.

В газоадсорбционной хроматографии подвижной фазой является инертный газ, а, неподвижной - адсорбент - твердое пористое тело. Адсорбент должен обладать большой удельной поверхностью, которую выражают обычно в м 2 на 1 г адсорбента. Высокой удельной поверхностью поглощения (сотни м 2 /г) отличается активный уголь (марок АГ-2 или АГ-3, СКТ % КАД, БАУ и др.), мелко- и крупнопористый силикагель (марок КСШ, АСК, АСМ, ШСК и др.), активный оксид алюминия. Довольно широко используются и молекулярные ситацеолиты марок NaA-4, СаА-5, NaX-9, СаХ-8 и др. В качестве подвижной фазы обычно используют следующие газы: гелий, азот, водород, аргон, углекислый газ.

Газоадсорбционная хроматография основана на различной склонности компонентов газовой смеси к адсорбции на данном адсорбенте. Во время перемещения анализируемого газа вдоль неподвижного слоя адсорбента беспорядочно движущиеся частицы газовой смеси как бы прилипают к активной поверхности твердого тела, а затем отделяются, улетают в окружающее пространство и снова возвращаются к поверхности адсорбента. С повышением температуры скорость движения частиц газа увеличивается, а адсорбция замедляется, так как при этом, частицы газа легче отделяются от поверхности твердого вещества и диффундируют в газовую фазу. Наоборот, с увеличением давления адсорбция усиливается, так как частицы газа находятся ближе к активной поверхности адсорбента и чаще ее бомбардируют. Повышение температуры, снижение давления, введение в систему малоактивного газа - все это способствует уменьшению концентрации хорошо адсорбирующегося компонента газа на поверхности адсорбента я порождает десорбцию.

Не меньшее влияние на процесс адсорбции оказывает природа газа. Экспериментальным путем установлено, что, например, при температуре 20 °С и давлении 101 325 Па (760 мм рт. ст.) газы по возрастающей склонности к адсорбции на активированном угле располагаются в следующем порядке: водород, азот, кислород, оксид углерода, метан, диоксид углерода.

При сопоставлении поглотительной способности активного угля с температурой кипения газов наблюдается определенная закономерность: чем выше температура кипения газа, тем лучше он адсорбируется углем. Например, адсорбционная способность углеводородных газов увеличивается в таком порядке: метан, этилен, этан, пропилен, пропан, изобутан, бутан, т.е. с повышением молекулярной массы. Опыт показывает также, что газообразные углеводороды с разветвленной цепью поглощаются несколько хуже их линейных изомеров.

В газожидкостной хроматографии Неподвижной фазой служит нелетучая жидкость, распределенная по поверхности твердого носителя в виде жидкой пленки. Этот вид хроматографии основан на различной растворимости компонентов газовой смеси в жидкой неподвижной фазе. Четкое разделение компонентов достигается благодаря различному давлению их пара над жидкой неподвижной пленкой. Ясно, что газ-носитель в первую очередь будет захватывать с собой вещества с наибольшим давлением пара. Очевидно, что это будут вещества с наименьшей растворимостью в жидком сорбенте.

Для увеличения общей поверхности поглощения жидкость наносят на крупнопористый инертный носитель, не обладающий сорбционной активностью по отношению к компонентам газовой смеси.

В зависимости от состава анализируемого газа применяют самые разнообразные полярные и неполярные жидкие поглотители. От правильного выбора жидкой фазы зависит четкость и полнота разделения компонентов. Жидкие поглотители должны быть особо чистыми, маловязкими, термостабильными и иметь минимальную летучесть при температуре процесса (давление пара не выше 133 Па (1 мм рт. ст.). Кроме того, они должны быть химически инертными к твердому носителю, компонентам разделяемой смеси и к газу-носителю. И самое главное - жидкий поглотитель должен обладать свойством селективно растворять компоненты анализируемой смеси.

Довольно широкое применение в качестве неподвижной фазы нашли следующие соединения: высокомолекулярные спирты, полиэтиленгликоли различной молекулярной массы, эфиры карбоновых кислот и алифатических спиртов (фталаты, адипинаты), гексадекан, а также вазелиновое и силиконовое масла и др.

Твердый носитель (подкладка для жидкой фазы) должен обладать достаточной удельной поверхностью, быть химически инертным к компонентам смеси и механически прочным, не разлагаться при температуре опыта и не оказывать большого сопротивления потоку газа-носителя. В хроматографической практике нашли применение такие твердые носители, как трепел Зикеевского карьера (ТЗК), инзенский кирпич (ИНЗ-600) и различные диатомитовые носители, такие, как сферохромы, порохромы, динохромы.

2. Устройство хроматографа

Общая схема современного хроматографа представлена на рис. 11. Из источника подвижной фазы 1 очищенный от примесей газ-носитель через дроссель поступает в хроматографическую колонку 3. В дозирующее устройство 2 в газообразном или жидком состоянии вводится анализируемая смесь. Она подхватывается газом-носителем и также поступает в хроматографическую колонку. Разделенные компоненты анализируемой смеси вместе с газом-носителем выходят из колонки через детектор Детектором называется прибор, с помощью которого в газе - носителе обнаруживаются компоненты разделяемой смеси. Фиксируемые детектором те или иные физические параметры газа на выходе из колонки преобразуются в нем в электрические сигналы, которые регистрируются самопишущим потенциометром 5. На диаграммной бумаге потенциометра вычерчивается кривая, состоящая из чередующихся пиков. Эта кривая называется хроматограммой.

Дозирующее устройство служит для ввода пробы в хромато - графическую колонку. Для газообразной пробы используются краны-дозаторы, состоящие из калиброванной между двумя кранами трубки; вместимость такого дозатора обычно не более 5 мл. Жидкая проба в объеме тысячных долей миллилитра вводится с помощью специального шприца или микрошприца (работающего по принципу медицинского) через каучуковую мембрану.

Хроматографическая колонка изготовляется из инертного материала (стекла, нержавеющей стали и др.) и представляет собой трубку. В зависимости от внутреннего диаметра колонки разделяются на насадочные - до 6 мм, микронасадочные - в пределах 1 мм и капиллярные - около 0,25 мм. По форме колонки бывают прямые, U-образные, W-образные и спиральные, цельные или состоящие из отдельных секций. Диаметр и длина колонки определяются составом хроматографируемого вещества, объемом введенной пробы, природой и количеством неподвижной фазы, а также размерами частиц адсорбента или носителя жидкой фазы.

Детектор является важнейшей частью хроматографа. Одним из первых детекторов служила несколько измененная по конфигурации газовая бюретка с раствором щелочи. При попадании в бюретку смеси углекислого газа (газа-носителя) и выделяемого компонента углекислый газ поглощается раствором щелочи, а газовый компонент поднимается в верхнюю часть бюретки. Это и дает возможность количественно учесть его объем. По мере выхода из колонки газовых компонентов уровень раствора щелочи в бюретке будет снижаться до полного выхода пробы газа. Откладывая на вертикальной оси объемы выделившегося газа (в мл), а на горизонтальной - время их выделения (в с), получаем ступенчатую хроматограмму. Высота каждой ступени кривой характеризует относительный объем компонентов. Несмотря на простоту устройства этот волюмометрический детектор не обладает надлежащей точностью, в частности, во время определения на поверхности раствора щелочи образуется пена, что затрудняет измерение уровня, особенно при малых количествах газовых компонентов.

Подобного рода устройства относятся к детекторам интегрального типа. Они позволяют учитывать общее количество анализируемого вещества, прошедшее через детектор за время анализа. Благодаря этому хроматографы с интегральными детекторами не требуют предварительной калибровки для количественной расшифровки хроматограмм.

Развитию хроматографического метода анализа в значительной степени способствовало внедрение более чувствительных и точных дифференциальных детекторов. В них сравниваются физические свойства. потока газа на выходе из колонки и чистого газа - носителя. К числу свойств газового потока, которые используются в этих детекторах, относятся теплопроводность, теплота сгорания, плотность, изменение ионного тока и др. Эти свойства в дальнейшем преобразуются в большинстве случаев в электрический сигнал, мгновенно фиксируемый регистратором. В дифференциальных детекторах, в отличие от интегральных, фиксируются и регистрируются на потенциометре мгновенные характеристики смеси газов, выходящей из колонки. Поэтому для расшифровки хроматограмм в этом случае необходима предварительная количественная калибровка. Среди детекторов этого типа широкое применение получили детектор по теплопроводности и ионизационно-пламенный.

При работе детектора по теплопроводности измеряется не абсолютная теплопроводность газа, а разность в теплопроводности газа-носителя и смеси газа-носителя с анализируемым компонентом. Чем эта разность больше, тем чувствительнее работа детектора. На практике в качестве газа-носителя наиболее широко применяется гелий, теплопроводность которого в несколько раз больше теплопроводности углеводородов и многих органических соединений. Хотя теплопроводность водорода выше, чем у гелия, но из-за взрывоопасности его применяют редко. Существенная часть детектора по теплопроводности - два термочувствительных элемента, которые изготовлены из платиновых или вольфрамовых нитей, а иногда из полупроводникового материала (термистора). Каждый термочувствительный элемент помещен в камеру блока детектора. Через сравнительную камеру 1 непрерывно проходит газ-носитель, а через измерительную камеру 2 смесь газа-носителя с выделяемыми компонентами. Обе камеры вместе с сопротивлениями 3 и 4 образуют измерительный мост Уитстона.

Схема детектора по теплопроводности: 1, 2 - камеры с термочувствительными элементами; 3-потенциометр; 4, 5-сопротивления; 6-милливольтметр; 7-источник постоянного тока

Схема ионизационно-пламенного детектора: 1-электрод-коллектор; 2 - электрод-горелка; 3-диффузор; 4, 5, изоляторы электродов; 6-усилитель тока, потенциометр

Когда в обе камеры поступает только газ-носитель, температура элементов в них одинакова и разность потенциалов равна нулю. При изменении состава газа, проходящего через измерительную камеру, температура в ней, изменяется вследствие передачи тепла газовому потому, обладающему иной теплопроводностью. Между точками А и Б возникает разность потенциалов, которая регистрируется в виде сигнала детектора.

Работа ионизационно-пламенного детектора (ДИП) основана на измерении электропроводности, возникающей в результате ионизации молекул газа при их поступлении в детектор.

ДИП, применяемый при анализе горючих газов, состоит из камеры, в которую одновременно по отдельным каналам поступает водород, воздух и газ-носитель в смеси с компонентами анализируемого газа. В камеру помещена горелка для сжигания водорода. В начале опыта в горелке сгорает водород в присутствии только газа-носителя. В получающемся диффузионном пламени примеси, имеющиеся в воздухе, водороде и газе-носителе, ионизируются, образуется некоторое количество ионов, за счет которых возникает незначительная электропроводность. Когда в пламя вместе с газом-носителем поступают горючие компоненты, выделяемые из колонки, количество ионов увеличивается и электропроводность пламени резко возрастает. Механизм ионизации весьма сложен и до конца не установлен. Возникает как бы два электрода, одним из которых является сопло горелки, а другим - электродом-коллектором - колпачок 1. Образующийся ток через усилитель 7 направляется в потенциометр, на диаграммной бумаге которого будет вычерчиваться хроматограмма.

ДИП устойчив к некоторым колебаниям давления газа и окружающей температуры. Он обладает высокой чувствительностью. Величина его сигнала почти пропорциональна числу атомов углерода в углеводородах. Однако присутствие примесей в газе - носителе и водороде может несколько нарушить точность его показаний, так как ДИП обладает некоторой (правда, малой) чувствительностью к воде, воздуху, инертным и некоторым другим газам (H 2 S, S0 2 , С0 2 , СО, NH 3 и др.).

Детекторы не являются универсальными приборами, и для каждой смеси хроматографируемых соединений в зависимости от их свойств выбирают соответствующий тип детектора. Поэтому очень часто во многих лабораторных хроматографах устанавливают несколько детекторов различных типов.

Сигналы детектора в процессе определения непрерывно регистрируются автоматическим потенциометром в виде кривой линии, состоящей из серии пиков. Пик по форме напоминает треугольник, одна из сторон которого соответствует концентрации компонента, возрастающей до максимума (вершина треугольника), а другая - убывающей до минимума.

хроматографический газовый адсорбция

3. Расшифровка хроматограмм

Отсчет ведется от базовой (нулевой) прямой линии У, параллельной горизонтальной оси. Эта линия вычерчивается при выходе из колонки чистого газа-носителя. Пик 2 отображает выход несорбирующегося компонента. Пик 3 характеризует период четкого выхода определенного компонента или смеси неразделяемых компонентов. Пик 4 по сравнению с пиками типа 3 имеет асимметричное строение. Такие пики отображают неравномерный выход компонента из колонки. Наконец, на практике встречаются и накладывающиеся Друг на друга пики (5, 5), которые объясняются близостью физико-химических свойств разделяемых компонентов, а также увеличением объема хроматографируемых веществ, недостаточной инертностью газа-носителя к разделяемым веществам и сорбенту, повышенными сорбционными свойствами твердого носителя, неточностью работы детектора. Встречаются и очень вытянутые в длину пики (7), площадь которых определить очень трудно.

По месту расположения пиков на хроматограмме или, что то же самое, по времени выхода компонентов можно установить качественный состав анализируемой смеси, так как для каждого компонента при определенных постоянных условиях разделения время порядок выхода из колонки всегда постоянны.

Для нахождения количественного состава анализируемой смеси газов используют зависимость между содержанием данного компонента в смеси и геометрическими размерами соответствующего ему пика на хроматограмме. Чаще всего количественную оценку хроматограммы производят по площади пиков S. Измерив площади пиков, относят их значения к сумме площадей всех пиков, умножают частное на 100 и таким образом находят содержание всех компонентов анализируемой смеси (в %).

Измерять площади пиков можно различными методами:

1) взвешиванием кусочков диаграммной бумаги, вырезанных по контуру каждого пика;

2) с помощью планиметра;

3) прямым подсчетом, путем умножения высоты пика на его ширину, измеренную на уровне половины высоты.

Рассмотрим последний случай определения площади каждого пика на примере хроматограммы, изображенной на рис. 14. Для пиков 3 и 4 высота h (в мм) измеряется от нулевой линии до максимума пика. На половине высоты пика проводят линию, параллельную базовой, и измеряют длину отрезка, ограниченного сторонами пика. Это и будет ширина пика а. Для пиков 5 и 6 прочерчивают пунктиром линии, недостающие для полной конфигурации пиков, какую они имели бы в случае нормального разделения компонентов. Затем обычным способом находят их высоту и ширину.

Площадь пика 7 измерить практически невозможно. Поэтому ее определяют методом взвешивания диаграммной бумаги на аналитических весах, относя массу диаграммной бумаги, вырезанной по контуру пика, к «массе всех пиков».

Иногда вместо площадей пиков используют их высоту, считая, что она пропорциональна площади.

Наконец, при хроматографировании смеси веществ, близких по химическому строению и свойствам, можно использовать еще один параметр - произведение высоты пика на время удерживания M R . Последнее может быть измерено на диаграммной бумаге по базовой линии от ввода пробы в колонку до максимума выхода компонента.

Выбор того или иного параметра (S, h или M R) зависит от многих факторов и прежде всего от состава смеси и эффективности ее разделения на данном хроматографе. Если подсчет площадей пиков не вызывает затруднений, то рекомендуется применять именно этот метод. Однако при использовании любого параметра для подсчета содержания компонентов в анализируемой смеси необходимо еще, как правило, вводить специальные коэффициенты, учитывающие чувствительность детекторов к отдельным компонентам газовой смеси. Только в отдельных, довольно редких случаях дифференциальные детекторы выдают импульсы, строго пропорциональные массовым количествам различных компонентов. В этих случаях расшифровку, хроматограмм проводят методом простой нормировки, как это описано выше, т.е. по различным параметрам хроматографических пиков, принимая их сумму за 100.

Но чаще всего соотношение геометрических размеров пиков далеко не отражает истинного соотношения концентраций компонентов в смеси. Поэтому необходимо для каждой анализируемой смеси веществ и для каждого хроматографа проводить предварительную калибровку прибора на искусственных смесях данных веществ. Очевидно, что целью калибровки является установление зависимости выходного сигнала детектора (или, что то же самое, характера и параметров кривой на хроматограмме) в определенных условиях хроматографирования от количества того или иного вещества, присутствующего в анализируемой смеси. Следует особо отметить, что калибровку и последующие анализы необходимо проводить строго при одних и тех же условиях. Так, при использовании детектора по теплопроводности и подсчете результатов анализа по площадям пиков особое значение имеет постоянство скорости газа-носителя, так как ширина пиков обратно пропорциональна этой скорости. Существует несколько способов калибровки и расчета хроматограмм:

1) абсолютная калибровка;

2) метод внутренней нормализации (или метод нормировки);

3) метод внутреннего стандарта.

Рассмотрим кратко сущность этих методов.

Задачей метода абсолютной калибровки является построение графиков зависимости высоты пиков, площади пиков или произведения высоты пиков на время удерживания (Л, 5 или Mr) от количества того или иного вещества, введенного в колонку. Такие графики необходимо иметь для каждого компонента анализируемой смеси. Для построения графика хроматографируют не менее пяти смесей, например, с воздухом точно заданного количества. Для получения искусственных смесей с разным содержанием данного компонента исходную калибровочную смесь можно разбавить газом-носителем. Каждый опыт повторяют не менее трех раз.

При хроматографировании исследуемых газовых смесей полученные хроматограммы расшифровывают с помощью этих калибровочных графиков, а зная количество пробы, введенной в колонку, рассчитывают и процентное содержание всех компонентов смеси.

Метод внутренней нормализации, или метод нормировки, с введением калибровочных коэффициентов заключается в том, что для расчета концентраций компонентов анализируемой смеси используют не просто высоты пиков, их площади или произведения высот на время удерживания (А, S или Mr), как в методе простой нормировки, а их значения, приведенные к величинам, пропорциональным концентрациям, т.е. произведения данного параметра пиков на калибровочный коэффициент. Использование калибровочных коэффициентов и дает возможность учесть чувствительность детектора ко всем компонентам смеси.

Калибровочные коэффициенты находят при хроматографировании искусственных смесей строго известного состава. Определение основано на пропорциональности концентраций компонентов в смеси С и параметров A, S или М R соответствующих пиков. Очевидно, что при равной чувствительности детектора к компонентам смеси будет иметь место соотношение:

При неодинаковой чувствительности детектора это соотношение нарушается, но может быть вновь восстановлено введением соответствующих коэффициентов. Для этого калибровочный коэффициент для одного из компонентов смеси принимают за единицу. Тогда коэффициенты для любого, т.е. i-го, компонента находят по формулам:

где h с, S С, (ht R) C и С C относятся к компоненту, коэффициент которого принят за единицу.

При анализе углеводородных газов чаще всего приравнивают к единице калибровочный коэффициент для нормального бутана.

Зная все калибровочные коэффициенты, концентрацию любого компонента С находят по приведенным параметрам всех пиков:

где n - число компонентов.

В этом методе необходимо точно определить выбранный параметр для всех пиков хроматограммы даже в тех случаях, когда интересуются только одним или несколькими компонентами или примесями. Однако метод удобен тем, что для многих веществ калибровочные коэффициенты известны и их можно принимать по литературным данным, а следовательно, не проводить предварительную калибровку прибора.

Метод внутреннего стандарта, или, как его иногда называют, «метод метки», основан на введении в анализируемую смесь точно известного количества какого-либо индивидуального вещества (стандарта). Для подсчета концентрации i-го компонента в анализируемой смеси используется прямая зависимость между концентрациями искомого компонента C i и стандартного вещества С ст в анализируемой смеси и параметрами h и 5 соответствующих пиков. Необходимо только выбирать такое стандартное вещество, чтобы его пик на хроматограмме хорошо отделялся от остальных пиков. Так как чувствительность детектора к стандартному веществу может быть иной, чем к искомому компоненту, то в данном методе необходимо учитывать соответствующие поправочные коэффициенты Ki и Кст.

где Pi и Р Ст - параметры пиков искомого и стандартного веществ; С ст - содержание стандартного вещества, %(масс.).

Метод удобен тем, что для подсчета количественного содержания того или иного компонента нет необходимости замерять параметры всех пиков.

В инструкциях по монтажу и эксплуатации различных хроматографов и в соответствующих ГОСТах обыкновенно приводятся подробные указания по расшифровке хроматограмм и поправочные коэффициенты, учитывающие чувствительность детектора.

Размещено на Allbest.ru

Подобные документы

    Природа явления, свойства, способы получения и использование сжиженных газов. Безопасный метода Линде, эффективный метод Клода, исследование свойств при нулевой температуре с помощью сжиженных газов. Применение газов в промышленности, медицине.

    реферат , добавлен 23.04.2011

    Изучение корпускулярной концепции описания природы, сущность которой в том, что все вещества состоят из молекул - минимальных частиц вещества, сохраняющих его химические свойства. Анализ молекулярно-кинетической теории газа. Законы для идеальных газов.

    контрольная работа , добавлен 19.10.2010

    Уравнение состояния газа Ван-дер-Ваальса, его сущность и краткая характеристика. Влияние сил молекулярного притяжения на стенки сосуда. Уравнение Ван-дер-Ваальса для произвольного числа молей газа. Изотермы реального газа и правило фаз Максвелла.

    реферат , добавлен 13.12.2011

    учебное пособие , добавлен 20.01.2011

    Понятие вещества и его состояния (твердое, жидкое, газообразное, плазменное), влияние изменения температуры. Физическое состояние газа, характеризующееся величинами: температура, давление, объем. Формулировка газовых законов: Бойля-Мариотта, Гей-Люссака.

    презентация , добавлен 09.04.2014

    Исследование метода анализа состава вещества, основанного на определении отношения массы частицы к её заряду. Принципиальное устройство масс-спектрометра. Электронная и химическая ионизация. Особенности разделения ионов анализатором масс. Типы детекторов.

    презентация , добавлен 05.01.2014

    Состав и марки технических сжиженных углеводородных газов, применяемых в газоснабжении. Свойства, достоинства и недостатки сжиженных газов, их хранение и использование. Одоризация смеси газов и жидкостей. Диаграммы состояния СУГ. Пересчёт состава смесей.

    реферат , добавлен 11.07.2015

    Химический состав и формирование химического состава газов в газовых и нефтяных залежах. Классификация газов: по условиям нахождения в природе, по генезису газов, по химическому составу, по их ценности. Методы определения состава природных газов.

    курсовая работа , добавлен 30.10.2011

    Скорости газовых молекул. Обзор опыта Штерна. Вероятность события. Понятие о распределении молекул газа по скоростям. Закон распределения Максвелла-Больцмана. Исследование зависимости функции распределения Максвелла от массы молекул и температуры газа.

    презентация , добавлен 27.10.2013

    Скорости газовых молекул. Понятие о распределении молекул газа по скоростям. Функция распределения Максвелла. Расчет среднеквадратичной скорости. Математическое определение вероятности. Распределение молекул идеального газа. Абсолютное значение скорости.

Хроматография – это обширная область физико-химических методов анализа, которая занимается разработкой методов разделения сложных по составу многокомпонентных смесей.

Характерными особенностями любых хроматографических методов являются следующие:

Высокая разрешающая способность процесса разделения, обусловленная высокой эффективностью процесса, дающая возможность разделения даже близких по природе, структуре и свойствам веществ. Этим, во многом, объясняется широкое распространение хроматографии в различных областях научных исследований, в лабораторной практике, промышленности.

Те разделения, которые до применения хроматографических методов не могли быть осуществлены, стали легко осуществимы после их появления. Сюда относятся, например, разделение смесей аминокислот на индивидуальные компоненты, разделение смесей углеводородов на индивидуальные вещества, разделение смесей редкоземельных элементов на отдельные элементы, выделение ферментов в чистом виде и многие другие разделения.

Мягкие условия разделения. Можно сравнить процесс хроматографического разделения смесей с процессом разделения сложных смесей методом перегонки, но если обычная перегонка осуществляется, как правило, в достаточно жестких условиях (высокая температура, глубокое вакуумирование), то хроматографические разделения осуществляются, как правило, в очень мягких условиях (при атмосферном давлении, при обычных температурах).

Перечислим основные задачи, которые могут быть решены с помощью хроматографических методов:

Разделение многокомпонентных по составу смесей на индивидуальные компоненты, т.е. по существу это качественный и количественный анализ сложных смесей веществ.

Концентрирование веществ из их очень разбавленных растворов. Цели здесь могут быть самые разные: хроматографические методы позволяют сконцентрировать уран, содержащийся в природных рудах в десятых, а то и сотых долях процента; сконцентрировать радий, содержащийся в природных водах в концентрациях 10 -5 −10 -6 г-атом/л. Может стоять задача извлечения ценных металлов (серебра, золота, платины) из разбавленных технологических растворов (гидрометаллургия) или производственных сточных вод (вопросы экологии).

Очистка технических продуктов, доведение этих продуктов до заданной степени химической чистоты, получение чистых химических реактивов.

Проверка вещества на однородность, на чистоту, т.е. идентификация вещества, доказательство того, что оно соответствует данной химической формуле.

Контроль различных производств методами хроматографии.

Классификация хроматографических методов

В основу классификаций хроматографических методов положены принципы, учитывающие следующие различные особенности процесса разделения:

Различия в агрегатном состоянии фаз используемой хроматографической системы;

Различия в характере взаимодействий разделяемых веществ с неподвижной фазой;

Экспериментальные различия в способах проведения процесса хроматографического разделения.

В таблицах 1−3 приведены основные варианты классификации известных хроматографических методов.

Таблица 1. Варианты хроматографии, различающиеся по агрегатному состоянию фаз

Поскольку характер взаимодействий разделяемых соединений с фазами различных хроматографических систем может сильно различаться, то почти не существует объектов, для разделения которых не удалось бы найти подходящей неподвижной фазы (твердой или жидкой) и систем подвижных растворителей.

Таблица 2. Варианты хроматографии, различающиеся по характеру взаимодействий разделяемых соединений с неподвижной фазой

Механизм процесса разделения Название варианта
по размеру молекул ситовая хроматография
за счет физической адсорбции молекулярная хроматография
за счет растворения распределительная хроматография
за счет ионного обмена ионообменная хроматография
за счет образования водородной связи, проявления химического сродства и др. хемосорбционная хроматография
за счет образования координационных связей разделяемых органических молекул с катионами металлов в привитых на поверхности адсорбента группах (лигандах) лигандообменная хроматография
за счет образования прочного комплекса только одним из разделяемых компонентов с привитой специфической группой неподвижной фазы аффинная хроматография

Таблица 3. Варианты хроматографии, различающиеся по способу проведения

Газовая хроматография

Несмотря на то, что метод газовой хроматографии был открыт только в 1952 году, теория процесса разделения смесей веществ этим методом на настоящее время разработана гораздо глубже, чем для других методов. Это объясняется прежде всего тем, что методы газовой хроматографии использовались в практике гораздо интенсивнее других.

Отличительной особенностью газовой хроматографии от других методов хроматографических разделений является то, что используемая подвижная фаза должна обязательно находится в газообразном состоянии и выполнять роль газа-носителя, перемещающего разделяемые соединения по колонке. В качестве газов-носителей могут быть использованы индивидуальные газы, газообразные соединения или смеси газов и газообразных соединений.

Характерными особенностями газовой хроматографии являются:

Высокая разделительная способность: по своим возможностям анализа многокомпонентных смесей газовая хроматография не имеет конкурентов. Ни один другой метод не позволяет анализировать фракции нефти, состоящие из сотен компонентов, в течение одного часа.

Универсальность: разделение и анализ самых различных смесей – от низкокипящих газов до смесей жидких и твердых веществ с температурой кипения до 500 о С и выше – характеризует универсальность метода. В нефтехимической и газовой промышленности 90−100 % всех анализов можно выполнять методом газовой хроматографии.

Высокая чувствительность: высокая чувствительность метода обусловлена тем, что применяемые детектирующие системы позволяют надежно определять концентрации 10 -8 – 10 -9 мг/мл. Используя методы концентрирования и селективные детекторы, можно определять микропримеси с концентрациями до 10 -10 %.

Экспрессность: экспрессность газовой хроматографии подчеркивается тем, что продолжительность разделения в большинстве случаев составляет 10−15 минут, иногда при разделении многокомпонентных смесей 1−1.5 часа. Однако за это время анализируется несколько десятков или сотен компонентов. В некоторых специальных случаях время разделения может быть меньше одной минуты.

Легкость аппаратурного оформления: газовые хроматографы относительно дешевы, достаточно надежны, имеется возможность полной автоматизации процесса анализа.

Малый размер пробы: газовая хроматография по существу метод микроанализа, поскольку для анализа достаточно пробы в десятые доли мг.

Высокая точность анализа: погрешность измерений ± 5 % относительных легко достигается практически на любой газохроматографической аппаратуре. В специальных условиях достигается погрешность ±0.001−0.002% относительных.

Следует отметить и существующие ограничения метода газовой хроматографии:

Невозможность разделения и анализа смесей нелетучих соединений;

Осложнения при разделении и анализе термически нестабильных соединений;

Невозможность разделения и анализа соединений, способных к диссоциации в анализируемых растворах (разделение ионов).

Газовый хроматограф. Принципиальная схема

Любая газохроматографическая установка обязательно должна содержать следующий перечень узлов:

Источник газа-носителя;

Вентиль тонкой регулировки скорости потока газа-носителя;

Устройство для ввода пробы;

Хроматографическая колонка;

Детектор;

Термостат колонки и термостат детектора;

Регистратор;

Измеритель скорости потока газа-носителя.

Рассмотрим назначение и устройство основных узлов газохроматографической установки.

Рис. 1. Принципиальная схема газового хроматографа (1 − источник газа-носителя; 2 − вентиль тонкой регулировки скорости потока газа-носителя; 3 − устройство для ввода пробы; 4 − хроматографическая колонка; 5 − детектор; 6 – термостат колонки и термостат детектора; 7 − регистратор; 8 − измеритель скорости потока газа-носителя)


Варианты метода

При классификации вариантов методов газовой хроматографии предполагается, что подвижная фаза (газ-носитель) абсолютно инертна к неподвижной фазе и разделяемым соединениям.

Таким образом, классификация вариантов основывается только на особенностях неподвижной фазы.

В качестве неподвижной фазы в газовой хроматографии используется или твердый адсорбент, или жидкость, нанесенная в виде тонкой пленки на адсорбционно-инертный твердый носитель.

В соответствии с типом используемых неподвижных фаз газохроматографические методы подразделяются на газо-адсорбционный и газо-жидкостный. Разделение компонентов анализируемой смеси в газо-адсорбционном варианте основано на различии разделяемых веществ в величинах адсорбции на поверхности адсорбента, а в случае газожидкостной хроматографии на различии в растворимости компонентов анализируемой смеси в неподвижной жидкой фазе.

В том случае, если используемый твердый носитель неподвижной жидкой фазы проявляет адсорбционные свойства, реализуется промежуточный вариант газовой хроматографии – газо-жидко-твердофаная хроматография.

Каждый из вариантов характеризуется своими положительными чертами и недостатками, которые обязательно следует учитывать при выборе оптимального метода разделения каждой конкретной смеси.

Газо-адсорбционная хроматография

Газо-адсорбционная хроматография представляет собой метод анализа смесей газов и легколетучих веществ. Разделение основано на различии в адсорбции на поверхности твердого носителя (адсорбента). Адсорбция может быть обусловлена неспецифическими (ориентационными, индукционными и дисперсионными) и специфическими взаимодействиями (комплексообразованием, либо образованием водородной связи) и зависит от природы адсорбента и сорбата. В качестве адсорбентов используют пористые носители, которые обладают химической, физической и термической стабильностью; однородной поверхностью, равномерным распределением по размеру пор и известной адсорбционной активностью. Адсорбционная активность зависит от удельной поверхности (определяется геометрической структурой носителя) и удельной поверхностной энергии (определяется химической структурой поверхности). Достоинствами адсорбентов в качестве неподвижных фаз являются способность выдерживать высокие температуры, отсутствие фонового сигнала при работе с ионизационными детекторами и высокая селективность. Адсорбенты делятся на неорганические, полимерные (органические) и модифицированные. Среди неорганических адсорбентов особо важны сорбенты на основе углеродных материалов. Это неполярные сорбенты, для них особую роль в процессе разделения играют геометрические параметры поверхности. Наиболее интересная особенность данных материалов – возможность разделения структурных изомеров. Широко используются полярные неорганические сорбенты на основе двуокиси кремния. Особый интерес для газо-адсорбционной хроматографии представляет использование цеолитовых молекулярных сит (M 2/n O Al 2 O 3 xSiO 2 yH 2 O), которые успешно позволяют разделять различные газовые смеси. Применение адсорбентов на основе Al 2 O 3 ограничено из-за его гетерополярной поверхности, гигроскопичности и асимметрии пиков разделяемых соединений. Сорбенты используют для разделения легких углеводородов. Наиболее многообразны полимерные сорбенты на основе пористых полимеров стирола и дивинилбензола. Их удается синтезировать с заданными свойствами и очень чистой поверхностью. Это гидрофобные сорбенты, слабо удерживающие полярные молекулы, содержащие гидрокси-амино-группы. Основная область применения полимерных сорбентов – разделение полярных и реакционно-способных газов и высоко полярных органических соединений; определение воды в органических растворителях и летучих органических примесей в воде.

Метод газо-адсорбционной хроматографии обычно используют для оценки содержания в атмосферном воздухе кислорода, водорода, метана, углекислого газа, окиси углерода, окислов азота, хлора, диоксида серы, сероводорода и сероуглерода.

Положительным для газо-адсорбционного метода анализа является:

· только в этом случае проявляется высокая разделительная способность при анализе смесей газов и паров низкокипящих веществ;

· нелетучесть твердого адсорбента;

· термическая стабильность адсорбента в широком интервале изменения температуры хроматографической колонки;

· более высокая скорость массообмена, чем в варианте газо-жидкостной хроматографии, что приводит к быстрому разделению смесей веществ;

· возможность модифицирования поверхности адсорбента;

· достаточная механическая прочность адсорбентов;

· доступность адсорбентов.

К недостаткам метода следует отнести:

· недостаточную геометрическую однородность поверхности адсорбентов;

· недостаточное постоянство химического состава поверхности адсорбентов из-за наличия примесей;

· повышенную адсорбционную активность адсорбентов;

· повышенную каталитическую активность адсорбентов;

· нелинейность изотермы адсорбции;

· недостаточно широкий выбор адсорбентов.

Газо-жидкостная хроматография

газовый спектрометрический компьютеризированный хроматограф

На практике чаще используют газо-жидкостную хроматографию, благодаря многообразию неподвижных фаз. В газо-жидкостной хроматографии разделение компонентов пробы достигается за счет многократного повторения процессов распределения между движущейся газовой и неподвижной жидкой фазами. Скорость миграции компонентов зависит от их летучести и способности растворяться в стационарной жидкой фазе. Компоненты с низкой растворимостью в жидкой фазе и наибольшей летучестью при данной температуре продвигаются по колонке быстрее, и, наоборот, компоненты с низкой летучестью и высокой растворимостью в стационарной фазе обладают малой подвижностью. Чем больше подвижность, тем меньше время удерживания.

В качестве носителя неподвижной фазы используют адсорбенты с поверхностью 0,5-3,0 м 2 /г и с размером пор (0,5-1,5)10 -3 мм. Наиболее часто используют диатомитовые носители, стеклянные шарики, силикагель и политетрафторэтилен.

Неподвижные фазы должны быть химически и термически стабильны, смачивать носитель и наноситься на его поверхность равномерной пленкой. Известно более тысячи неподвижных жидких фаз, достаточно часто используется около 100. По химическому составу неподвижные фазы делят на следующие классы:

Углеводороды (предельные углеводороды, смеси предельных и непредельных углеводородов, ароматические углеводороды) Примеры: сквалан, парафиновое масло, апиезоновые смазки, алкилнафталины, полифениловый эфир

Силоксаны с радикалами различной полярности (неполярными, среднеполярными и полярными) Примеры: метилсилоксан, метилфенилсилоксан, нитрилсилоксан, полиэфирсиликоны

Эфиры простые и сложные, полиэфиры, полигликоли

Фталаты и фосфаты

Выбор неподвижной фазы зависит от полярности разделяемых соединений и от их способности образовывать водородные связи. Для разделения полярных сорбатов необходимы полярные неподвижные фазы, неполярных – неполярные. Понятие полярности объединяет свойства, обуславливающие селективность за счет физического взаимодействия молекул с функциональными группами. Учитывается сумма неразрывно связанных взаимодействий, например, взаимная ориентация диполей, индуктивные и дисперсионные силы, образование водородных мостиков.

В газо-жидкостной хроматографии разница в удерживании определяется и неспецифическими, и специфическими взаимодействиями. Неполярные соединения обычно разделяются в соответствии с температурами их кипения. В случае неполярной неподвижной фазы полярные соединения удерживаются существенно меньше, чем неполярные, кипящие при той же температуре. Удерживание полярных соединений увеличивается по мере роста полярности неподвижной фазы, и, наоборот, время удерживания соединений возрастает с уменьшением полярности неподвижной фазы.

Капиллярная газовая хроматография

Широкое многообразие используемых жидких неподвижных фаз определяет успех разделения большого количества соединений различной природы. Однако одно лишь изменение природы неподвижной фазы и связанное с этим изменение ее растворяющей способности не может обеспечить успех разделения во всех случаях. При разделении сложных смесей компонентов с близкими химическими и физическими свойствами и смесей, состоящих из большого числа разнообразных веществ, на первый план выдвигаются повышенные требования к качеству работы хроматографической колонки. Этим требованиям отвечают капиллярные колонки без носителя, когда пленка неподвижной фазы наносится на внутреннюю поверхность капилляра. Этот тип колонок, предложенный Голеем в 1957 году, обеспечивает значительно большую эффективность разделения по сравнению с обычными насадочными колонками.

Математическое описание процесса миграции конечной по протяженности зоны вещества в бесконечно длинной трубке базируется на следующих положениях:

· реализуется ламинарное течение газа-носителя;

· неподвижная фаза фиксирована на внутренней стенке капилляра в виде гомогенной жидкой пленки;

· распределение скоростей в потоке вязкой среды в трубке круглого сечения имеет параболический характер;

· у оси потока скорость максимальна, а непосредственно вблизи стенок скорость перемещения среды равна нулю.

Движение газа-носителя в колонках без наполнителя сопровождается значительно меньшими энергетическими потерями, чем в заполненных пористым материалом трубках с той же величиной свободного сечения. Отсутствие заполнения позволяет улучшить на два и более порядка эффективность колонки.

Для приготовления капиллярных колонок используют стеклянные, кварцевые или металлические трубки, которые должны удовлетворять следующим требованиям:

· капилляр должен иметь нужную длину и постоянный диаметр по всей длине, причем эти параметры не должны изменяться под действием температуры и давления;

· внутренняя поверхность капилляра должна быть химически однородной, на ней не должно быть больших трещин и пор;

· поверхность должна адсорбировать сорбаты, жидкие неподвижные фазы и газ-носитель в минимальной степени;

· поверхность должна прочно и равномерно смачиваться неподвижной фазой, т.е. на поверхности должен быть гомогенный разделяющий слой неподвижной фазы;

· капилляры должны обладать необходимой механической прочностью.

Приготовление колонки состоит из ряда этапов: изготовления капилляра; подготовки внутренней поверхности капилляра – травлением или дезактивацией; нанесения неподвижной фазы; кондиционирования и испытания капиллярной колонки.

Для того чтобы достичь высокой разделяющей способности колонок, на внутренние стенки капиллярной трубки должна быть нанесена однородная равномерная пленка жидкости. В настоящее время используют два основных способа: динамический и статический. В случае первого внутренняя поверхность капилляра смачивается при пропускании через капилляр определенного объема раствора жидкой фазы в подходящем растворителе под действием повышенного давления какого-либо газа. Движущаяся по капилляру пробка раствора оставляет позади себя жидкую пленку, затем через капилляр пропускают инертный газ, в результате чего испаряется растворитель, и получается тонкая пленка неподвижной фазы. Статический способ заключается в том, что капилляр заполняется раствором неподвижной фазы и растворитель испаряется в условиях повышенной температуры или пониженного давления. Толщину разделяющего слоя следует выбирать исходя из того, что между подвижной газовой фазой и разделяющим слоем должен происходить интенсивный массообмен с тем, чтобы равновесие между ними устанавливалось достаточно быстро, и чтобы емкость колонки (она определяется количеством неподвижной жидкой фазы) была не слишком мала. Для увеличения емкости предложено фиксировать неподвижную фазу в тонком слое носителя, нанесенном на стенку капилляра.

Существует несколько типов капиллярных колонок:

1. Капиллярные колонки с пленкой жидкой неподвижной фазой (WCOT) тонкая пленка неподвижной фазы нанесена непосредственно на внутреннюю поверхность колонки толщина пленки 0,01-1 мкм; внутренний диаметр и толщина стенок - n.10-n.100 мкм

2. Капиллярные колонки с пористым слоем, пропитанным жидкой фазой, (PLOT) на внутренних стенках расположен слой носителя, несущего неподвижную фазу толщина пленки 1 - 5 мкм

3. Капиллярные колонки с твердым носителем (ПКК-ТН или PLOT) на внутренних стенках напылен слой твердого носителя толщина пленки 10 мкм

4. Капиллярные колонки с химически привитой неподвижной фазой Отличия капиллярных колонок по своим характеристикам от насадочных определяют специфические особенности газохроматографической аппаратуры для работы с ними. Такими особенностями являются малые объемы вводимых проб, невысокие значения расхода газа-носителя и высокие скорости изменения концентрации при элюировании передних и задних фронтов хроматографических пиков. Это обусловливает тот факт, что все соединения капиллярных колонок с другими элементами прибора должны быть выполнены так, чтобы объем возникающих при этом полостей был минимальным.

Особенности капиллярной хроматографии предъявляют весьма жесткие требования к детекторам. Они должны обладать высокой чувствительностью и скоростью регистрации сигнала и иметь небольшой объем измерительной камеры. В наибольшей степени удовлетворяет всем требованиям пламенно-ионизационный детектор.

Реакционная газовая хроматография

В реакционной газовой хроматографии (РГХ) используются направленные химические превращения нелетучих соединений в летучие, а также неустойчивых в устойчивые. Используется несколько вариантов РГХ:

· химическое образование производных;

· пиролитическая РГХ (исследуемые вещества разлагаются при высоких температурах и затем хроматографически определяются образовавшиеся продукты);

· метод "вычитания" (мешающие компоненты поглощаются специфическими реагентами и не влияют на определение определяемых компонентов).

К положительным особенностям РГХ относятся: расширение области применения газовой хроматографии; улучшение разделения анализируемых соединений, т.к. индивидуальные свойства соединений более заметно проявляются в образующихся производных, чем в исходных соединениях; существенное улучшение количественных характеристик аналитических определений; увеличение чувствительности детектирования; лучшая сохранность хроматографической колонки.

Недостатками РГХ являются: усложнение анализа, ухудшение эффективности разделения, увеличение времени анализа.

Наиболее широко применяется получение производных.

Основные способы получения производных перечислены ниже:

1. Получение силильных производных.

2. Алкилирование

3. Получение сложных эфиров

На практике используют:

Диазометановый метод, где реакция дериватизации проходит по уравнению RCOOH + CH 2 N 2 → RCOOCH 3 + N 2 ,

метанольный метод ─RCOOH + CH 3 OH → RCOOCH 3 и

пиролитический метод ─ RCOOH + (CH 3) 4 NOH → RCOOCH 3 + H 2 O + (CH 3) 3 N.

4. Получение простых эфиров

Дериватизация соединений проходит по уравнению:

ROH + CH 3 I →ROCH 3 + HI


5. Получение ацильных производных

На схеме представлены процессы дериватизации:

наиболее распространенные ацилирующие реагенты─ ангидриды соответствующих кислот

6. Образование оксимов и гидразинов

7. Образование производных неорганических соединений (летучих хелатов металлов, алкилпроизводных ртути, гидридов, хлоридов).

Хромато-масс-спектрометрия

Сочетание ГХ и масс-спектрометрии – один из наиболее эффективных методов анализа сложных смесей в объектах окружающей среды. Аналитические возможности ГХ и масс-спектрометрии идеально дополняют друг друга, и сочетание методов позволяет получать большой объем информации. На рис. приведена схема компьютеризированной хромато-масс-спектрометрической установки, которая позволяет провести все стадии анализа самых сложных смесей органических веществ.

ГХ и МС присущи общие особенности – в обоих методах:

– анализ вещества проводится в газовой фазе;

– количество вещества, необходимое для одного анализа, составляет 10- 6 г;

– скорости выполнения анализов в обоих методах могут быть согласованы таким образом, что в процессе элюирования одного хроматографического пика можно измерить несколько полных масс- спектров.

Различие состоит в том, что в ионном источнике масс-спектрометра поддерживается высокий вакуум (10 -5 -10 -6 Па), тогда как давление в хроматографической колонке 10 5 Па. Для понижения давления используют молекулярный сепаратор, который одним концом соединен с хроматографической колонкой, а другим с ионным источником масс- спектрометра. Сепаратор удаляет из газового потока, выходящего из колонки, основную часть газа-носителя, а органическое вещество пропускает в масс-спектрометр. Давление при этом понижается до рабочего давления масс-спектрометра. Для этого используют следующие процессы массопереноса:

– эффузию через узкие поры и щели;

– диффузию в расширяющейся газовой струе;

– диффузию через полупроницаемые мембраны.

Эти процессы используются в эффузионном, струйном и мембранном молекулярных сепараторах, соответственно. Для ионизации используют ионный удар, но более интересен другой способ ионизации – химическая ионизация. При этом способе источник ионов заполняется газом-реактантом, который ионизируется электронным ударом, а молекулы определяемых органических соединений превращаются в ионы за счет взаимодействия с ионами газа-реактанта или "медленными" электронами. Такая ионизация является "мягкой", то есть образовавшиеся ионы не разваливаются на мелкие фрагменты, а остаются в виде "молекулярного иона". Для ионизации лабильных органических соединений (в том числе биологически активных) разработаны специальные методы ионизации: ионизация в электроспрее (ESI) и ее подвид – химическая ионизация при атмосферном давлении (MALDI). Развитию хромато-масс-спекторметрии способствовало также создание "быстрых" квадрупольных масс-анализаторов.

Аналитическое применение хроматографии.

Хроматография - это один из методов пробоподготовки. При анализе сложных смесей для уверенного определения количества интересующего компонента практически всегда необходима подготовка пробы к анализу: экстракция, кристаллизация, выпаривание, соосаждение и т.д. Один из методов такой подготовки пробы является процесс хроматографирования, т.е. разделения сложной смеси на составляющие компоненты. Накопленный опыт позволяет утверждать, что при анализе сложных объектов нельзя пренебрегать практически ни одним из компонентов:

· при экологических исследованиях установлено, что токсичное действие малых концентраций тяжелых металлов значительно выше, чем действие значительных концентраций NO 2 , SO 2 и т.д.;

· при биологических исследованиях выясняют мощное влияние малых концентраций витаминов, антибиотиков, других лекарственных препаратов;

· при анализе пищевых продуктов на фоне большого содержания белков, жиров, углеводов весьма важно определение токсинов, минеральных веществ;

· качество выпускаемой продукции в значительной степени определяется наличием или, наоборот, отсутствием различных добавок, находящихся в малых концентрациях.

Эти примеры можно умножить.

Из сказанного можно сделать вполне определенный вывод: в настоящее время требуется детальный химический анализ разнообразных смесей и биологических объектов. Решение этой задачи невозможно без применения достаточно эффективных методов разделения сложных смесей. Среди таких методов доминирует хроматография. Бурно развиваясь в последнее десятилетие, этот метод открыл возможность разделения смесей, содержащих десятки и сотни компонентов, их количественный и качественный анализ, препаративное выделение индивидуальных веществ. Принципы хроматографии весьма универсальны, благодаря чему она оказалась пригодной для изучения объектов самой разной природы, от нефти и газов атмосферы до белков и даже вирусов.

Период, наступивший в аналитической химии органических соединений с начала 60-х годов без преувеличения может быть назван эпохой хроматографии. Один из вариантов этого метода - колоночная жидкостная хроматография, был создан русским ботаником Цветом М.С. (откуда название хроматографов "Цвет") в 1903г. На протяжении последующих сорока лет хроматография не находила широкого практического применения. Лишь после 1950г. приходит время признания хроматографии. В 1952г. были выполнены первые работы по жидкостной хроматографии, а вскоре освоен выпуск газовых хроматографов, и в течение последующих 20 лет газохроматографический анализ стал основным методом исследования летучих термически устойчивых соединений. Но большинство органических соединений не обладает необходимой для газовой хроматографии летучестью и термостойкостью, и хроматографировать их можно только в более мягких условиях, характерных для жидкостной колоночной хроматографии. Скорость же и эффективность разделения, а также чувствительность анализа по этому методу долго оставались неудовлетворительными. И лишь в 1965-75 гг. были в принципе решены основные научные и технологические проблемы, сдерживавшие развитие метода. Последовавший затем прогресс был столь поразителен, что современная инструментальная разновидность метода получила самостоятельное наименование - высокоэффективная жидкостная хроматография. Важнейшим катализатором развития хроматографической науки и практики были потребности разных химических и естественных наук, начиная от медицины и кончая криминалистикой, не говоря уже о науках химических и биологических. Внедрение хроматографических методов в эти области радикальным образом изменило тактику и методику исследований, обеспечило новые возможности контроля производства (до 200 хроматографов на 1 предприятии). Хроматографическое оборудование сейчас можно увидеть и в химической лаборатории, и в цехе, и в больнице, и в кабине корабля.

Можно утверждать, что внедрение хроматографии прививает современному химику новый взгляд на вещества и смеси, которые он исследует. Оказывается, ни одно вещество не такое чистое, каким кажется, и не одна смесь не такая простая, какой кажется, пока досконально не изучены хроматографическими методами. В справедливости этого исследовательского тезиса убежден, наверное, каждый в чью работу хроматография вошла прочно. Но пессимизм здесь только в форме, а не в содержании, так как обнаружение в смеси с помощью хроматографии новых компонентов или примесей может обернуться ценным научным результатом или, по меньшей мере, предотвратить ошибочные решения и выводы.

Итак, хроматография - это:

а) ряд теоретических представлений, посвященных законам сорбции и массопередачи;

б) материальный фундамент - приборы и сорбенты;

в) методологические и прикладные исследования, приводящие к созданию конкретных методик.

Список использованных источников

· Шаповалова Е.Н., Пирогов А.В., "Хроматографические методы анализа" Методическое пособие для специального курса, Москва, 2007

· В. А. Винарский, "Хроматография" Курс лекций в двух частях Часть 1. Газовая хроматография, МИНСК Научно-методический центр "Электронная книга БГУ" 2003

Орлов В.И. Аратсков А.А, "Жидкостная хроматография".

Хроматография — это метод исследования газовых, жидкостных, паровых или растворенных веществ путем их физико-химического разделения на монокомпоненты. Сам хроматографический метод основан на распределении элементов смесей между подвижной (элюент) и неподвижной фазами (твердое вещество или жидкость на основе инертного носителя). После разделения смеси качественные характеристики и количественное содержание каждого из элементов можно определить любыми способами химического или физического исследования. Если исследуемое вещество не разделилось на компоненты хроматографическим путем, то его принято считать однородным. Применение хроматографического анализа активно практикуется в лабораториях и промышленности с целью комплексного исследования многокомпонентных смесей, контроля качества производства, выделения индивидуальных компонентов, разделения рассеянных и редких элементов. В данной статье мы рассмотрим следующие аспекты:

Хроматографические методы анализа

В зависимости от способа взаимодействия и распределения элементов смеси между элюентом и неподвижной фазой сегодня выделяют следующие разновидности хроматографических методов:

  • Адсорбционная. Основу данного метода составляет различие сорбируемости разделяемых абсорбентом твердых веществ.
  • Распределительная. У истоков метода стоит растворимость элементов сложного вещества в элюенте и неподвижной фазе.
  • Ионообменная. Этот вид исследования основывается на различии постоянных между неподвижной фазой и монокомпонентами исследуемой смеси.
  • Эксклюзионная. В основе — разная способность проницаемости в неподвижную фазу молекул компонентов.
  • Осадочная. Этот метод предполагает разную способность элементов смеси выпадать в осадок на твердой неподвижной фазе.

    • Метод Элюент (подвижная фаза) Неподвижная фаза
      ГХ (Газовая абсорбционная) Неспецифические сорбенты, цеолиты или молекулярные сита
      ГЖХ (газовая распределительная) Газы (воздух, аргон, азот, гелий) Пленки разнополярных жидких сорбентов на твердом носителе
      ЖЖК, ЖАХ, ВЭЖХ (жидкостная сорбционная) Водно-органические растворы и смеси Пленки разнополярных жидких сорбентов на твердом носителе. Цеолиты или молекулярные сита
      Молекулярно-ситовая Полимерные и мономерные растворы Молекулярные сита
      Ионообменная Водные растворы Амфолиты, аниониты, катиониты
      ЖЖК, ЖАХ (плоскостная) Растворители органической и неорганической природы Гидрофобная и гидрофильная бумага

      По агрегатному состоянию элюента хроматографию классифицируют на:

      • Газовую. Ее методы исследования используются для дифференцирования газов на монокомпоненты, определения примесей в воздухе, жидкости, почве, продуктах промышленности. Хроматографический анализ данного типа активно применяется для определения состава лекарственных препаратов и выхлопных газов, а также в сфере криминалистики.
      • Жидкостную. Ее методы эффективны при анализе, очистке и разделении синтетических полимеров, медикаментов, гормонов, белков и прочих биологически важных веществ. Благодаря высокочувствительным детекторам этот способ позволяет работать с малым объемом сложных веществ, что чрезвычайно важно при проведении биологических исследований.

      Газовая хроматография

      Газовая хроматография — это вид хроматографического анализа, где в качестве элюента выступает газообразное вещество или пар. На сегодняшний день выделяют следующие категории:

      • Газоадсорбционная. В этом случае в качестве неподвижной фазы выступает твердое вещество.
      • Газожидкостная. В роли неподвижной фазы выступает жидкость.

      Хроматографический анализ проводится при помощи газового хроматографа . Поступление газа-носителя осуществляется из баллона повышенного давления в блок носителя (здесь же происходит дополнительная очистка газа). От исследуемой смеси отбирают пробу, которая при повышенной температуре вводится в газовый поток через резиновую мембрану. Введение пробы возможно также и посредством автоматических систем ввода — самплеров. Далее происходит испарение жидкой пробы и перенесение ее в колонку хроматографа потоком газа. Разделение осуществляется при температуре 200-400 градусов, но в ряде случаев возможно дифференцирование при более низких температурных показателях. Разделенные в потоке газа компоненты поступают в дифференциальные детекторы, регистратор фиксирует изменения во времени, и на основании полученных данных, вырисовывается хроматограмма.

      Если в исследовании одновременно задействовано несколько детекторов, то можно говорить о возможности комплексного анализа хроматографических зон с двумя и более соединениями.

      Тонкослойная хроматография


      Тонкослойная хроматография или сокращенно — ТСХ — представляет собой хроматографический анализ сложных твердых и жидких смесей, в основе которого лежит разное распределение разделяемых веществ между сорбирующим слоем и подвижной фазой. За счет этого вещества за одно и то же время смещаются на разные расстояния. Этот метод отличается повышенной чувствительностью и предоставляет большие возможности для исследования и разделения многокомпонентных смесей. В качестве оборудования для проведения анализа посредством ТСХ используется специальный прибор, устройство которого представлено на рисунке.

      Ионообменная хроматография

      Ионообменная хроматография базируется на задержании в неподвижной фазе молекул веществ в результате электростатического взаимодействия разнополярных ионов. При проведении исследования ионы анализируемого вещества начинают конкурировать с ионами элюента, стремясь к взаимодействию с сорбентами, которые заряжены противоположно. Это значит, что данный метод подходит для анализа любых смесей, которые могут быть ионизированы.

      Газожидкостная хроматография

      В основе газожидкостной хроматографии (ГЖХ) лежит физико-химическое разделение вещества, которое находится в газовой фазе и проходит вдоль нанесенной на твердый сорбент нелетучей жидкости. Такая хроматографическая методика сегодня считается наиболее перспективной. Перспективность данного хроматографического метода обусловлена возможностью исследования близких по составу компонентов сложной смеси, даже если их температура кипения отличается на десятые доли градуса. На проведение анализа обычно требуется небольшое количество вещества и всего несколько минут. Для исследования смеси методом газожидкостной хроматографии применяется современный хроматограф , схематичное устройство которого представлено на рисунке ниже.


      Обозначения:

      1 — баллон с газом-носителем;
      2 — блок стабилизации потока газа;
      3 — аналитический блок (колонки, термостат и ротаметр);
      4 — детектор;
      5 — усилитель;
      6 — потенциометр-самописец;
      7 — блок программированного изменения температуры колонки.

      Качественный и количественный анализ газа

      Хроматографический анализ газа — это процесс исследования газовых смесей на предмет количества содержащихся в них компонентов и их качественных характеристик. Чаще всего комплексный анализ газовых веществ удобнее и эффективнее проводить методом газожидкостной хроматографии. Такая хроматографическая методика особенно актуальна в сфере контроля технологических параметров продуктов газовой, химической и нефтехимической промышленности, а также при проведении поиска месторождений нефти и газа. В ряде случаев хроматографический анализ газа применяется для идентификации взрывоопасных, токсичных или легковоспламеняющихся веществ в воздухе промышленного помещения.