Aritmetik ilerlemenin ilk 2 sayısını bilmek. Aritmetik ilerlemenin n'inci terimi için formül. Tutar formülü

O halde oturup bazı sayıları yazmaya başlayalım. Örneğin:
Herhangi bir sayı yazabilirsiniz ve istediğiniz kadar sayı olabilir (bizim durumumuzda vardır). Ne kadar sayı yazarsak yazalım her zaman hangisinin birinci, hangisinin ikinci olduğunu vb. sonuncuya kadar söyleyebiliriz, yani onları numaralandırabiliriz. Bu bir sayı dizisi örneğidir:

Numara dizisi
Örneğin dizimiz için:

Atanan numara, dizideki yalnızca bir numaraya özeldir. Yani dizide üç saniyelik sayı yok. İkinci sayı (inci sayı gibi) her zaman aynıdır.
Üzerinde sayı bulunan sayıya dizinin inci terimi denir.

Genellikle dizinin tamamını bir harfle (örneğin,) çağırırız ve bu dizinin her üyesi, bu üyenin numarasına eşit bir indeksle aynı harftir: .

Bizim durumumuzda:

Diyelim ki komşu sayılar arasındaki farkın aynı ve eşit olduğu bir sayı dizimiz var.
Örneğin:

vesaire.
Bu sayı dizisine aritmetik ilerleme denir.
"İlerleme" terimi, 6. yüzyılda Romalı yazar Boethius tarafından ortaya atılmış ve daha sonra anlaşılmıştır. geniş anlamda sonsuz bir sayı dizisi gibi. "Aritmetik" adı, eski Yunanlılar tarafından incelenen sürekli oranlar teorisinden aktarılmıştır.

Bu, her bir üyesi aynı sayıya eklenen bir öncekine eşit olan bir sayı dizisidir. Bu sayıya fark denir aritmetik ilerleme ve belirlenir.

Hangi sayı dizilerinin aritmetik ilerleme olduğunu, hangilerinin olmadığını belirlemeye çalışın:

A)
B)
C)
D)

Anladım? Cevaplarımızı karşılaştıralım:
Dır-dir aritmetik ilerleme - b, c.
Değil aritmetik ilerleme - a, d.

Verilen ilerlemeye () dönelim ve onun inci teriminin değerini bulmaya çalışalım. Var iki onu bulmanın yolu.

1. Yöntem

İlerlemenin 3. dönemine ulaşana kadar ilerleme sayısını önceki değere ekleyebiliriz. Özetleyecek çok fazla şeyimiz olmaması iyi bir şey; yalnızca üç değer:

Yani, açıklanan aritmetik ilerlemenin inci terimi eşittir.

2. Yöntem

İlerlemenin inci teriminin değerini bulmamız gerekirse ne olur? Toplama işlemi bir saatten fazla zaman alır ve sayıları toplarken hata yapmayacağımız da bir gerçek değil.
Elbette matematikçiler, aritmetik ilerlemenin farkını önceki değere eklemenin gerekli olmadığı bir yol bulmuşlardır. Çizilen resme daha yakından bakın... Elbette belli bir modeli zaten fark etmişsinizdir, yani:

Örneğin bu aritmetik ilerlemenin . teriminin değerinin nelerden oluştuğuna bakalım:


Başka bir deyişle:

Belirli bir aritmetik ilerlemenin bir üyesinin değerini bu şekilde kendiniz bulmaya çalışın.

Hesapladın mı? Notlarınızı cevapla karşılaştırın:

Aritmetik ilerlemenin terimlerini sırayla önceki değere eklediğimizde, önceki yöntemdekiyle tamamen aynı sayıyı elde ettiğinizi lütfen unutmayın.
Bu formülü "kişisellikten arındırmaya" çalışalım - hadi hayata geçirelim Genel form ve şunu elde ederiz:

Aritmetik ilerleme denklemi.

Aritmetik ilerlemeler artan veya azalan olabilir.

Artan- terimlerin her bir sonraki değerinin bir öncekinden daha büyük olduğu ilerlemeler.
Örneğin:

Azalan- terimlerin her bir sonraki değerinin bir öncekinden daha küçük olduğu ilerlemeler.
Örneğin:

Türetilen formül, bir aritmetik ilerlemenin hem artan hem de azalan terimlerinin hesaplanmasında kullanılır.
Bunu pratikte kontrol edelim.
Bize aşağıdaki sayılardan oluşan bir aritmetik ilerleme veriliyor: Hesaplamak için formülümüzü kullanırsak, bu aritmetik ilerlemenin inci sayısının ne olacağını kontrol edelim:


O zamandan beri:

Dolayısıyla formülün hem azalan hem de artan aritmetik ilerlemede çalıştığına inanıyoruz.
Bu aritmetik ilerlemenin inci ve inci terimlerini kendiniz bulmaya çalışın.

Sonuçları karşılaştıralım:

Aritmetik ilerleme özelliği

Sorunu karmaşıklaştıralım - aritmetik ilerlemenin özelliğini türeteceğiz.
Diyelim ki bize aşağıdaki koşul verildi:
- aritmetik ilerleme, değeri bulun.
Kolay, deyin ve zaten bildiğiniz formüle göre saymaya başlayın:

Haydi o zaman:

Kesinlikle doğru. Önce bulduğumuz, sonra onu ilk sayıya eklediğimiz ve aradığımız şeyi elde ettiğimiz ortaya çıktı. İlerleme küçük değerlerle temsil ediliyorsa, o zaman bunda karmaşık bir şey yoktur, peki ya durumda bize sayılar verilirse? Katılıyorum, hesaplamalarda hata yapma olasılığı var.
Şimdi bu sorunu herhangi bir formülü kullanarak tek adımda çözmenin mümkün olup olmadığını düşünün. Elbette evet ve şimdi bunu ortaya çıkarmaya çalışacağız.

Aritmetik ilerlemenin gerekli terimini, onu bulma formülünü bildiğimiz gibi gösterelim - bu, başlangıçta türettiğimiz formülün aynısıdır:
, Daha sonra:

  • ilerlemenin önceki dönemi:
  • ilerlemenin bir sonraki dönemi:

İlerlemenin önceki ve sonraki terimlerini özetleyelim:

İlerlemenin önceki ve sonraki terimlerinin toplamının, aralarında bulunan ilerleme teriminin çift değeri olduğu ortaya çıktı. Yani önceki ve ardışık değerleri bilinen bir ilerleme teriminin değerini bulmak için bunları toplayıp bölmeniz gerekir.

Doğru, aynı numarayı aldık. Malzemeyi güvence altına alalım. İlerlemenin değerini kendiniz hesaplayın, hiç de zor değil.

Tebrikler! İlerleme hakkında neredeyse her şeyi biliyorsunuz! Geriye, efsaneye göre tüm zamanların en büyük matematikçilerinden biri olan "matematikçilerin kralı" Karl Gauss tarafından kolayca çıkarılabilen tek bir formül bulmak kalıyor...

Carl Gauss 9 yaşındayken, diğer sınıflardaki öğrencilerin çalışmalarını kontrol etmekle meşgul olan bir öğretmen sınıfta şu görevi verdi: "Diğer kaynaklara göre dahil olan tüm doğal sayıların toplamını hesapla." Öğrencilerinden biri (bu Karl Gauss'tu) bir dakika sonra göreve doğru cevabı verirken, gözüpek sınıf arkadaşlarının çoğu uzun hesaplamalardan sonra yanlış sonucu aldığında öğretmenin ne kadar şaşırdığını bir düşünün...

Genç Carl Gauss, sizin de kolayca fark edebileceğiniz belli bir modeli fark etti.
Diyelim ki -'inci terimlerden oluşan bir aritmetik ilerlememiz var: Aritmetik ilerlemenin bu terimlerinin toplamını bulmamız gerekiyor. Elbette tüm değerleri manuel olarak toplayabiliriz, ancak ya görev Gauss'un aradığı gibi terimlerin toplamını bulmayı gerektiriyorsa?

Bize verilen ilerlemeyi tasvir edelim. Vurgulanan sayılara daha yakından bakın ve onlarla çeşitli matematiksel işlemler gerçekleştirmeye çalışın.


Bunu denediniz mi? Ne fark ettin? Sağ! Toplamları eşittir


Şimdi söyleyin bana, bize verilen ilerlemede toplamda böyle kaç tane çift var? Tabii ki, tüm sayıların tam yarısı.
Bir aritmetik ilerlemenin iki teriminin toplamının eşit ve benzer çiftlerin eşit olduğu gerçeğine dayanarak, toplam toplamın şuna eşit olduğunu elde ederiz:
.
Dolayısıyla herhangi bir aritmetik ilerlemenin ilk terimlerinin toplamının formülü şu şekilde olacaktır:

Bazı problemlerde n'inci terimi bilmiyoruz ama ilerlemenin farkını biliyoruz. Üçüncü terimin formülünü toplam formülünde değiştirmeye çalışın.
Ne aldın?

Tebrikler! Şimdi Carl Gauss'a sorulan probleme dönelim: th'den başlayan sayıların toplamının ve th'den başlayan sayıların toplamının neye eşit olduğunu kendiniz hesaplayın.

Ne kadar aldın?
Gauss, terimlerin toplamının eşit olduğunu ve terimlerin toplamının eşit olduğunu buldu. Karar verdiğin şey bu mu?

Aslında aritmetik ilerlemenin terimlerinin toplamına ilişkin formül, 3. yüzyılda antik Yunan bilim adamı Diophantus tarafından kanıtlandı ve bu süre boyunca esprili insanlar aritmetik ilerlemenin özelliklerinden tam olarak yararlandılar.
Örneğin, Eski Mısır'ı ve o zamanın en büyük inşaat projesini hayal edin - bir piramidin inşası... Resimde bunun bir tarafı gösteriliyor.

Buradaki ilerleme nerede diyorsunuz? Dikkatlice bakın ve piramit duvarının her sırasındaki kum bloklarının sayısında bir desen bulun.


Neden aritmetik bir ilerleme olmasın? Tabana blok tuğlalar yerleştirilirse bir duvar inşa etmek için kaç blok gerektiğini hesaplayın. Umarım parmağınızı ekranda hareket ettirirken saymazsınız, son formülü ve aritmetik ilerleme hakkında söylediğimiz her şeyi hatırlıyor musunuz?

Bu durumda ilerleme şu şekilde görünür: .
Aritmetik ilerleme farkı.
Aritmetik ilerlemenin terim sayısı.
Verilerimizi son formüllere yerleştirelim (blok sayısını 2 şekilde hesaplayalım).

Yöntem 1.

Yöntem 2.

Artık monitörde hesaplayabilirsiniz: Elde edilen değerleri piramidimizdeki blok sayısıyla karşılaştırın. Anladım? Tebrikler, aritmetik ilerlemenin n'inci terimlerinin toplamını öğrendiniz.
Elbette tabandaki bloklardan bir piramit inşa edemezsiniz, ama nereden? Bu durumda bir duvar inşa etmek için kaç tane kum tuğlaya ihtiyaç duyulduğunu hesaplamaya çalışın.
Becerebildin mi?
Doğru cevap bloklardır:

Eğitim

Görevler:

  1. Masha yaz için forma giriyor. Her gün squat sayısını artırıyor. Masha ilk antrenmanda squat yaptıysa haftada kaç kez squat yapacak?
  2. İçerisindeki tüm tek sayıların toplamı kaçtır?
  3. Günlükleri saklarken, kaydediciler bunları her biri üst katmanöncekinden bir eksik günlük içerir. Duvarın temeli kütüklerden oluşuyorsa, bir duvarda kaç kütük vardır?

Yanıtlar:

  1. Aritmetik ilerlemenin parametrelerini tanımlayalım. Bu durumda
    (haftalar = günler).

    Cevap:İki hafta içinde Masha'nın günde bir kez ağız kavgası yapması gerekiyor.

  2. İlk tek sayı, son sayı.
    Aritmetik ilerleme farkı.
    Tek sayıların sayısı yarıdır, ancak aritmetik ilerlemenin inci terimini bulma formülünü kullanarak bu gerçeği kontrol edelim:

    Sayılar tek sayılar içerir.
    Mevcut verileri formülde değiştirelim:

    Cevap:İçerisindeki tüm tek sayıların toplamı eşittir.

  3. Piramitlerle ilgili sorunu hatırlayalım. Bizim durumumuz için a , her üst katman bir log azaltıldığı için toplamda bir grup katman vardır, yani.
    Verileri formülde yerine koyalım:

    Cevap: Duvarda kütükler var.

Özetleyelim

  1. - Bitişik sayılar arasındaki farkın aynı ve eşit olduğu bir sayı dizisi. Artabilir veya azalabilir.
  2. Formül bulma Aritmetik ilerlemenin inci terimi, ilerlemedeki sayıların sayısı olan - formülüyle yazılır.
  3. Aritmetik ilerlemenin üyelerinin mülkiyeti- - ilerleyen sayıların sayısı nerede.
  4. Bir aritmetik ilerlemenin terimlerinin toplamı iki şekilde bulunabilir:

    değerlerin sayısı nerede.

ARİTMETİK İLERLEME. ORTALAMA SEVİYE

Numara dizisi

Oturup bazı sayıları yazmaya başlayalım. Örneğin:

Herhangi bir sayı yazabilirsiniz ve istediğiniz kadar sayı olabilir. Ama hangisinin birinci, hangisinin ikinci olduğunu her zaman söyleyebiliriz, yani onları numaralandırabiliriz. Bu bir sayı dizisi örneğidir.

Numara dizisi her birine benzersiz bir numara atanabilen bir sayı kümesidir.

Başka bir deyişle, her sayı belirli bir doğal sayıyla ve benzersiz bir sayıyla ilişkilendirilebilir. Ve bu sayıyı bu setteki başka bir sayıya atamayacağız.

Üzerinde sayı bulunan sayıya dizinin th üyesi denir.

Genellikle dizinin tamamını bir harfle (örneğin,) çağırırız ve bu dizinin her üyesi, bu üyenin numarasına eşit bir indeksle aynı harftir: .

Dizinin inci teriminin bir formülle belirtilmesi çok uygundur. Örneğin, formül

sırayı ayarlar:

Ve formül aşağıdaki dizidir:

Örneğin, aritmetik ilerleme bir dizidir (buradaki ilk terim eşittir ve fark eşittir). Veya (, fark).

n'inci terim formülü

Terimi bulmak için önceki veya birkaç önceki terimi bilmeniz gereken bir formüle yinelenen diyoruz:

Örneğin bu formülü kullanarak ilerlemenin üçüncü terimini bulmak için önceki dokuz terimi hesaplamamız gerekecek. Mesela izin ver. Daha sonra:

Peki formülün ne olduğu artık anlaşıldı mı?

Her satıra eklediğimiz sayıyı bir sayıyla çarpıyoruz. Hangisi? Çok basit: bu mevcut üyenin sayısından eksi:

Artık çok daha uygun, değil mi? Kontrol ediyoruz:

Kendin için karar ver:

Aritmetik ilerlemede n'inci terimin formülünü ve yüzüncü terimi bulun.

Çözüm:

İlk terim eşittir. Fark ne? İşte şu:

(İlerlemenin ardışık terimlerinin farkına eşit olması nedeniyle buna fark denmesinin nedeni budur).

Yani formül:

O halde yüzüncü terim şuna eşittir:

'den 'e kadar olan tüm doğal sayıların toplamı nedir?

Efsaneye göre büyük matematikçi Carl Gauss, 9 yaşında bir çocukken bu miktarı birkaç dakika içinde hesaplamıştı. İlk ve son sayıların toplamının eşit olduğunu, ikinci ve sondan bir önceki sayıların toplamının aynı olduğunu, sondan üçüncü ve 3'üncü sayıların toplamının aynı olduğunu vb. fark etti. Toplamda bu tür çiftlerden kaç tane var? Bu doğru, tüm sayıların tam yarısı kadar. Bu yüzden,

Herhangi bir aritmetik ilerlemenin ilk terimlerinin toplamı için genel formül şöyle olacaktır:

Örnek:
Tüm iki basamaklı katların toplamını bulun.

Çözüm:

Bu türden ilk sayı şudur. Sonraki her sayı, bir önceki sayıya eklenerek elde edilir. Böylece ilgilendiğimiz sayılar ilk terimi ve farkıyla aritmetik bir ilerleme oluşturur.

Bu ilerlemenin inci teriminin formülü:

Hepsinin iki basamaklı olması gerekiyorsa ilerlemede kaç terim vardır?

Çok kolay: .

İlerlemenin son terimi eşit olacaktır. Sonra toplam:

Cevap: .

Şimdi kendiniz karar verin:

  1. Sporcu her gün bir önceki güne göre daha fazla metre koşar. İlk gün m km koşarsa haftada toplam kaç kilometre koşacaktır?
  2. Bir bisikletçi her gün bir önceki güne göre daha fazla kilometre kat eder. İlk gün km yol kat etti. Bir kilometreyi kat etmek için kaç gün yol alması gerekiyor? Yolculuğunun son gününde kaç kilometre yol kat edecek?
  3. Bir mağazadaki buzdolabının fiyatı her yıl aynı miktarda düşüyor. Ruble karşılığında satışa sunulan ve altı yıl sonra ruble karşılığında satılan bir buzdolabının fiyatının her yıl ne kadar düştüğünü belirleyin.

Yanıtlar:

  1. Burada en önemli şey aritmetik ilerlemeyi tanımak ve parametrelerini belirlemektir. Bu durumda (haftalar = günler). Bu ilerlemenin ilk terimlerinin toplamını belirlemeniz gerekir:
    .
    Cevap:
  2. Burada verilmiştir: , bulunmalıdır.
    Açıkçası, önceki problemdekiyle aynı toplam formülünü kullanmanız gerekir:
    .
    Değerleri değiştirin:

    Kök açıkça uymuyor, dolayısıyla cevap şu.
    Son gün boyunca katedilen yolu, inci terimin formülünü kullanarak hesaplayalım:
    (km).
    Cevap:

  3. Verilen: . Bulmak: .
    Daha basit olamazdı:
    (ovmak).
    Cevap:

ARİTMETİK İLERLEME. ANA ŞEYLER HAKKINDA KISACA

Bu, bitişik sayılar arasındaki farkın aynı ve eşit olduğu bir sayı dizisidir.

Aritmetik ilerleme artan () ve azalan () olabilir.

Örneğin:

Aritmetik ilerlemenin n'inci terimini bulma formülü

artan sayıların sayısı olan formülle yazılır.

Aritmetik ilerlemenin üyelerinin mülkiyeti

Bir ilerlemenin bir terimini, eğer komşu terimleri biliniyorsa (ilerlemedeki sayıların sayısı nerede) kolayca bulmanızı sağlar.

Aritmetik ilerlemenin terimlerinin toplamı

Tutarı bulmanın iki yolu vardır:

Değerlerin sayısı nerede.

Değerlerin sayısı nerede.

KALAN 2/3 MAKALELER SADECE SİZ AKILLI ÖĞRENCİLERE SUNULMUŞTUR!

YouClever öğrencisi olun,

“Ayda bir fincan kahve” fiyatına Birleşik Devlet Sınavına veya Matematikte Birleşik Devlet Sınavına hazırlanın,

Ayrıca "YouClever" ders kitabına, Hazırlık Programına (çalışma kitabı) "100gia"ya sınırsız erişim elde edin, sınırsız deneme Birleşik Devlet Sınavı ve OGE, YouClever ve 100gia çözümlerinin ve diğer hizmetlerinin analizi ile 6000 problem.


Evet evet: aritmetik ilerleme sizin için bir oyuncak değil :)

Pekala arkadaşlar, eğer bu metni okuyorsanız, o zaman iç kanıt bana aritmetik ilerlemenin ne olduğunu henüz bilmediğinizi, ancak gerçekten (hayır, böyle: Çoooook!) bilmek istediğinizi söylüyor. Bu nedenle uzun tanıtımlarla sizi sıkmayacağım ve doğrudan konuya gireceğim.

Öncelikle birkaç örnek. Birkaç sayı kümesine bakalım:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

Tüm bu setlerin ortak noktası nedir? İlk bakışta hiçbir şey yok. Ama aslında bir şey var. Yani: sonraki her öğe öncekinden aynı sayıda farklıdır.

Kendiniz karar verin. İlk küme, her biri bir öncekinden bir fazla olan ardışık sayılardan oluşur. İkinci durumda, bitişik sayılar arasındaki fark zaten beştir, ancak bu fark hala sabittir. Üçüncü durumda ise tamamen kökler vardır. Bununla birlikte, $2\sqrt(2)=\sqrt(2)+\sqrt(2)$ ve $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, yani. ve bu durumda, sonraki her öğe $\sqrt(2)$ kadar artar (ve bu sayının irrasyonel olduğundan korkmayın).

Yani: bu tür dizilerin tümüne aritmetik ilerlemeler denir. Kesin bir tanım verelim:

Tanım. Her birinin bir öncekinden tam olarak aynı miktarda farklı olduğu sayı dizisine aritmetik ilerleme denir. Sayıların farklı olduğu miktara ilerleme farkı denir ve çoğunlukla $d$ harfiyle gösterilir.

Gösterim: $\left(((a)_(n)) \right)$ ilerlemenin kendisidir, $d$ onun farkıdır.

Ve sadece birkaç önemli not. İlk olarak, ilerleme yalnızca dikkate alınır sipariş edildi sayıların sırası: kesinlikle yazıldıkları sıraya göre okunmalarına izin verilir - başka hiçbir şeye izin verilmez. Sayılar yeniden düzenlenemez veya değiştirilemez.

İkincisi, dizinin kendisi sonlu veya sonsuz olabilir. Örneğin (1; 2; 3) kümesinin sonlu bir aritmetik ilerleme olduğu açıktır. Ancak (1; 2; 3; 4; ...) ruhuyla bir şey yazarsanız, bu zaten sonsuz bir ilerlemedir. Dörtten sonraki üç nokta, daha pek çok sayının geleceğini ima ediyor gibi görünüyor. Mesela sonsuz sayıda :)

İlerlemelerin artabileceğini veya azalabileceğini de belirtmek isterim. Artanları zaten gördük - aynı küme (1; 2; 3; 4; ...). İşte azalan ilerlemelerin örnekleri:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

Tamam tamam: son örnek aşırı karmaşık görünebilir. Ama gerisini sanırım anlıyorsunuz. Bu nedenle yeni tanımlar sunuyoruz:

Tanım. Aritmetik ilerlemeye denir:

  1. her bir sonraki öğenin bir öncekinden büyük olması durumunda artan;
  2. aksine, sonraki her öğe bir öncekinden daha azsa azalır.

Ek olarak, "durağan" diziler de vardır - bunlar aynı tekrar eden sayıdan oluşur. Örneğin, (3; 3; 3; ...).

Geriye tek bir soru kalıyor: Artan ilerlemeyi azalan ilerlemeden nasıl ayırt edebiliriz? Neyse ki, buradaki her şey yalnızca $d$ sayısının işaretine bağlıdır, yani. ilerleme farklılıkları:

  1. $d \gt 0$ ise ilerleme artar;
  2. $d \lt 0$ ise ilerleme açıkça azalıyor demektir;
  3. Son olarak, $d=0$ durumu vardır - bu durumda tüm ilerleme aynı sayıların sabit bir dizisine indirgenir: (1; 1; 1; 1; ...), vb.

Yukarıda verilen üç azalan ilerleme için $d$ farkını hesaplamaya çalışalım. Bunu yapmak için herhangi iki bitişik öğeyi (örneğin birinci ve ikinci) alıp soldaki sayıyı sağdaki sayıdan çıkarmak yeterlidir. Bunun gibi görünecek:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

Gördüğümüz gibi her üç durumda da fark aslında negatif çıktı. Artık tanımları az çok anladığımıza göre, ilerlemelerin nasıl tanımlandığını ve hangi özelliklere sahip olduğunu anlamanın zamanı geldi.

İlerleme terimleri ve yineleme formülü

Dizilerimizin elemanları değiştirilemediği için numaralandırılabilirler:

\[\left(((a)_(n)) \right)=\left\( ((a)_(1)),\ ((a)_(2)),((a)_(3) )),... \Sağ\)\]

Bu kümenin bireysel elemanlarına bir ilerlemenin üyeleri denir. Bir sayıyla belirtilirler: birinci üye, ikinci üye vb.

Ek olarak, zaten bildiğimiz gibi, ilerlemenin komşu terimleri aşağıdaki formülle ilişkilidir:

\[((a)_(n))-((a)_(n-1))=d\Rightarrow ((a)_(n))=((a)_(n-1))+d \]

Kısacası, bir ilerlemenin $n$th terimini bulmak için $n-1$th terimini ve $d$ farkını bilmeniz gerekir. Bu formüle yinelenen denir, çünkü onun yardımıyla herhangi bir sayıyı yalnızca öncekini (ve aslında tüm öncekileri) bilerek bulabilirsiniz. Bu çok sakıncalıdır, bu nedenle hesaplamaları ilk terime ve farka indirgeyen daha kurnaz bir formül vardır:

\[((a)_(n))=((a)_(1))+\left(n-1 \right)d\]

Muhtemelen bu formülle zaten karşılaşmışsınızdır. Her türlü referans kitaplarında ve çözüm kitaplarında bunu vermekten hoşlanıyorlar. Ve herhangi bir mantıklı matematik ders kitabında ilklerden biridir.

Ancak biraz pratik yapmanızı öneririm.

Görev No.1. Aritmetik ilerlemenin ilk üç terimini $\left(((a)_(n)) \right)$ if $((a)_(1))=8,d=-5$ yazın.

Çözüm. Yani, ilk terimi $((a)_(1))=8$ ve $d=-5$ ilerlemesinin farkını biliyoruz. Az önce verilen formülü kullanalım ve $n=1$, $n=2$ ve $n=3$ yerine koyalım:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \\ & ((a)_(1))=((a)_(1))+\left(1-1 \right)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\left(2-1 \right)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\left(3-1 \right)d=((a)_(1))+2d=8-10= -2. \\ \end(hizala)\]

Cevap: (8; 3; −2)

Bu kadar! Lütfen dikkat: ilerlememiz azalıyor.

Elbette $n=1$ yerine başka bir şey konulamaz; ilk terim bizim tarafımızdan zaten bilinmektedir. Ancak birliği yerine koyarak formülümüzün ilk terim için bile işe yaradığına ikna olduk. Diğer durumlarda her şey banal aritmetiğe indirgendi.

Görev No.2. Bir aritmetik dizinin yedinci terimi -40'a ve on yedinci terimi -50'ye eşitse ilk üç terimini yazın.

Çözüm. Sorunun durumunu tanıdık terimlerle yazalım:

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\( \begin(align) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=((a) _(1))+16d \\ \end(align) \right.\]

\[\left\( \begin(align) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \end(align) \Sağ.\]

Sistem işaretini koydum çünkü bu gereksinimlerin aynı anda karşılanması gerekiyor. Şimdi şunu belirtelim ki ikinci denklemden birinciyi çıkarırsak (bir sistemimiz olduğu için bunu yapmaya hakkımız var) şunu elde ederiz:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\&10d=-10; \\&d=-1. \\ \end(hizala)\]

İlerleme farkını bulmak işte bu kadar kolay! Geriye kalan tek şey, bulunan sayıyı sistemdeki denklemlerden herhangi birine koymaktır. Örneğin, ilkinde:

\[\begin(matrix) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \\ ((a)_(1))=-40+6=-34. \\ \end(matris)\]

Şimdi ilk terimi ve farkı bildiğimize göre, ikinci ve üçüncü terimleri bulmaya devam ediyoruz:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(hizala)\]

Hazır! Problem çözüldü.

Cevap: (−34; −35; −36)

İlerlemeyle ilgili keşfettiğimiz ilginç özelliğe dikkat edin: $n$th ve $m$th terimlerini alıp bunları birbirinden çıkarırsak, ilerlemenin farkını $n-m$ sayısıyla çarparak elde ederiz:

\[((a)_(n))-((a)_(m))=d\cdot \left(n-m \right)\]

Basit ama çok kullanışlı özellik Kesinlikle bilmeniz gereken - onun yardımıyla birçok ilerleme sorununun çözümünü önemli ölçüde hızlandırabilirsiniz. İşte bunun açık bir örneği:

Görev No.3. Bir aritmetik ilerlemenin beşinci terimi 8,4, onuncu terimi ise 14,4'tür. Bu ilerlemenin on beşinci terimini bulun.

Çözüm. $((a)_(5))=8.4$, $((a)_(10))=14.4$ ve $((a)_(15))$'ı bulmamız gerektiğinden, şunu not ediyoruz:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ & ((a)_(10))-((a)_(5))=5d. \\ \end(hizala)\]

Ancak $((a)_(10))-((a)_(5))=14.4-8.4=6$ koşuluna göre, dolayısıyla $5d=6$, bundan şunu elde ederiz:

\[\begin(align) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14,4=20,4. \\ \end(hizala)\]

Cevap: 20.4

Bu kadar! Herhangi bir denklem sistemi oluşturmamıza ve ilk terimi ve farkı hesaplamamıza gerek yoktu; her şey sadece birkaç satırda çözüldü.

Şimdi başka bir problem türüne bakalım: ilerlemenin negatif ve pozitif terimlerini bulmaya. Bir ilerleme artarsa ​​ve ilk terimi negatifse, er ya da geç olumlu terimlerin içinde görüneceği bir sır değildir. Ve bunun tersi de geçerlidir: azalan ilerlemenin koşulları er ya da geç olumsuz hale gelecektir.

Aynı zamanda unsurları sırayla geçerek bu anı “kafa kafaya” bulmak her zaman mümkün olmuyor. Çoğu zaman problemler öyle bir şekilde yazılır ki formülleri bilmeden hesaplamalar birkaç sayfa kağıt alır; biz cevabı bulurken uykuya dalarız. Bu nedenle bu sorunları daha hızlı çözmeye çalışalım.

Görev No.4. Aritmetik ilerlemede kaç tane negatif terim var −38,5; −35,8; ...?

Çözüm. Yani, $((a)_(1))=-38.5$, $((a)_(2))=-35.8$, buradan farkı hemen buluruz:

Farkın pozitif olduğunu, dolayısıyla ilerlemenin arttığını unutmayın. İlk terim negatiftir, dolayısıyla bir noktada pozitif sayılara rastlayacağız. Tek soru bunun ne zaman olacağıdır.

Hadi şunu bulmaya çalışalım: ne zamana kadar (yani ne zamana kadar) doğal sayı$n$) terimlerin olumsuzluğu korunur:

\[\begin(align) & ((a)_(n)) \lt 0\Rightarrow ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38.5+\left(n-1 \right)\cdot 2.7 \lt 0;\quad \left| \cdot 10 \sağ. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\Rightarrow ((n)_(\max ))=15. \\ \end(hizala)\]

Son satır biraz açıklama gerektiriyor. Yani $n \lt 15\frac(7)(27)$ olduğunu biliyoruz. Öte yandan, sayının yalnızca tamsayı değerleriyle yetiniyoruz (ayrıca: $n\in \mathbb(N)$), dolayısıyla izin verilen en büyük sayı tam olarak $n=15$'dır ve hiçbir durumda 16 değildir. .

Görev No.5. Aritmetik ilerlemede $(()_(5))=-150,(()_(6))=-147$. Bu ilerlemenin ilk pozitif teriminin sayısını bulun.

Bu, bir öncekiyle tamamen aynı problem olacaktır, ancak $((a)_(1))$'ı bilmiyoruz. Ancak komşu terimler biliniyor: $((a)_(5))$ ve $((a)_(6))$, böylece ilerlemenin farkını kolayca bulabiliriz:

Ayrıca standart formülü kullanarak beşinci terimi birinci ve fark üzerinden ifade etmeye çalışalım:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ & ((a)_(1))=-150-12=-162. \\ \end(hizala)\]

Şimdi önceki göreve benzeterek ilerliyoruz. Pozitif sayıların dizimizin hangi noktasında görüneceğini öğrenelim:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Rightarrow ((n)_(\min ))=56. \\ \end(hizala)\]

Bu eşitsizliğin minimum tamsayı çözümü 56 sayısıdır.

Lütfen unutmayın: son görevde her şey katı eşitsizliğe indi, bu nedenle $n=55$ seçeneği bize uymayacaktır.

Artık basit problemleri nasıl çözeceğimizi öğrendiğimize göre, daha karmaşık problemlere geçelim. Ama önce, aritmetik ilerlemelerin bize çok fazla zaman kazandıracak ve gelecekte eşit olmayan hücrelere sahip olmamızı sağlayacak çok yararlı başka bir özelliğini inceleyelim. :)

Aritmetik ortalama ve eşit girintiler

Artan aritmetik ilerlemenin birkaç ardışık terimini ele alalım $\left(((a)_(n)) \right)$. Bunları sayı doğrusunda işaretlemeye çalışalım:

Sayı doğrusunda aritmetik ilerlemenin terimleri

Özellikle $((a)_(n-3))),...,((a)_(n+3))$ gibi keyfi terimleri işaretledim, $((a)_(1)) ,\'yi değil. ((a)_(2))),\ ((a)_(3))$, vb. Çünkü şimdi anlatacağım kural her “segment” için aynı şekilde işliyor.

Ve kural çok basit. Tekrarlanan formülü hatırlayalım ve işaretli tüm terimler için yazalım:

\[\begin(align) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \end(hizala)\]

Ancak bu eşitlikler farklı şekilde yeniden yazılabilir:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \end(hizala)\]

Peki ne olmuş? Ve $((a)_(n-1))$ ve $((a)_(n+1))$ terimlerinin $((a)_(n)) $'dan aynı uzaklıkta olması . Ve bu mesafe $d$'a eşittir. Aynı şey $((a)_(n-2))$ ve $((a)_(n+2))$ terimleri için de söylenebilir - bunlar aynı zamanda $((a)_(n) öğesinden de kaldırılmıştır. )$ aynı mesafede $2d$'a eşittir. Sonsuza kadar devam edebiliriz, ancak anlam resimde çok iyi gösterilmiştir.


İlerleme koşulları merkezden aynı uzaklıkta yer alır

Bu bizim için ne anlama geliyor? Bu, eğer komşu sayılar biliniyorsa $((a)_(n))$ öğesinin bulunabileceği anlamına gelir:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1))))(2)\]

Mükemmel bir ifade elde ettik: Bir aritmetik ilerlemenin her terimi, komşu terimlerin aritmetik ortalamasına eşittir! Üstelik: $((a)_(n))$'dan sola ve sağa bir adım değil, $k$ adımlarla geri adım atabiliriz - ve formül yine de doğru olacaktır:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k))))(2)\]

Onlar. $((a)_(100))$ ve $((a)_(200))$$'ı biliyorsak kolayca $((a)_(150))$ bulabiliriz, çünkü $(( a)_ (150))=\frac(((a)_(100))+((a)_(200))))(2)$. İlk bakışta bu gerçeğin bize hiçbir faydası olmadığı düşünülebilir. Ancak pratikte birçok problem aritmetik ortalamayı kullanacak şekilde özel olarak uyarlanmıştır. Bir göz at:

Görev No. 6. $-6((x)^(2))$, $x+1$ ve $14+4((x)^(2))$ sayılarının ardışık terimler olduğu tüm $x$ değerlerini bulun. aritmetik ilerleme (belirtilen sıraya göre).

Çözüm. Bu sayılar bir ilerlemenin üyeleri olduğundan, aritmetik ortalama koşulu onlar için karşılanmıştır: merkezi öğe $x+1$ komşu öğeler cinsinden ifade edilebilir:

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2))))(2); \\ & x+1=7-((x)^(2)); \\ & ((x)^(2))+x-6=0. \\ \end(hizala)\]

Sonuç klasik ikinci dereceden bir denklemdir. Kökleri: $x=2$ ve $x=-3$ yanıtlardır.

Cevap: −3; 2.

Görev No.7. $-1;4-3;(()^(2))+1$ sayılarının aritmetik bir ilerleme oluşturduğu (bu sırayla) $$ değerlerini bulun.

Çözüm. Ortadaki terimi yine komşu terimlerin aritmetik ortalaması üzerinden ifade edelim:

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2 \sağ.; \\ & 8x-6=((x)^(2))+x; \\ & ((x)^(2))-7x+6=0. \\ \end(hizala)\]

Tekrar ikinci dereceden denklem. Ve yine iki kök var: $x=6$ ve $x=1$.

Cevap 1; 6.

Bir sorunu çözme sürecinde bazı acımasız rakamlarla karşılaşırsanız veya bulunan cevapların doğruluğundan tam olarak emin değilseniz, o zaman kontrol etmenize olanak tanıyan harika bir teknik var: sorunu doğru çözdük mü?

Diyelim ki 6 numaralı problemde -3 ve 2 cevaplarını aldık. Bu cevapların doğru olduğunu nasıl kontrol edebiliriz? Bunları orijinal durumuna takalım ve ne olacağını görelim. Bir aritmetik ilerleme oluşturması gereken üç sayımız ($-6(()^(2))$, $+1$ ve $14+4(()^(2))$) olduğunu hatırlatmama izin verin. $x=-3$ yerine koyalım:

\[\begin(align) & x=-3\Rightarrow \\ & -6((x)^(2))=-54; \\ & x+1=-2; \\ & 14+4((x)^(2))=50. \end(hizala)\]

−54 sayısını aldık; −2; Farkı 52 olan 50 sayısı şüphesiz bir aritmetik ilerlemedir. Aynı şey $x=2$ için de olur:

\[\begin(align) & x=2\Rightarrow \\ & -6((x)^(2))=-24; \\ & x+1=3; \\ & 14+4((x)^(2))=30. \end(hizala)\]

Yine ilerleme oldu ama 27'lik bir farkla. Böylece sorun doğru bir şekilde çözüldü. İsteyen ikinci sorunu kendi başına kontrol edebilir ama hemen söyleyeyim: orada da her şey doğru.

Genel olarak son problemleri çözerken başka bir şeyle karşılaştık ilginç gerçekşunu da unutmamak lazım:

Eğer üç sayı ikincisi birincinin ve sonuncunun aritmetik ortalaması olacak şekildeyse, bu sayılar aritmetik bir ilerleme oluşturur.

Gelecekte bu ifadeyi anlamak, sorunun koşullarına dayalı olarak gerekli ilerlemeleri kelimenin tam anlamıyla "inşa etmemize" olanak tanıyacaktır. Ancak böyle bir "inşaa" girişmeden önce, daha önce tartışılanlardan doğrudan çıkan bir gerçeğe daha dikkat etmeliyiz.

Öğeleri gruplama ve toplama

Tekrar sayı eksenine dönelim. Burada ilerlemenin birkaç üyesini not edelim, belki bunlar arasında. diğer birçok üyeye değer:

Sayı doğrusunda 6 eleman işaretlenmiştir

“Sol kuyruğu” $((a)_(n))$ ve $d$ aracılığıyla ve “sağ kuyruğu” $((a)_(k))$ ve $d$ aracılığıyla ifade etmeye çalışalım. Çok basit:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(k-1))=((a)_(k))-d; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \end(hizala)\]

Şimdi aşağıdaki miktarların eşit olduğunu unutmayın:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= S; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= S. \end(hizala)\]

Basitçe söylemek gerekirse, ilerlemenin toplamda $S$ sayısına eşit olan iki öğesini başlangıç ​​olarak düşünürsek ve sonra bu öğelerden şu sayıya doğru adım atmaya başlarsak: zıt taraflar(birbirinize doğru veya tam tersi uzaklaşmak için), sonra rastlayacağımız elementlerin toplamları da eşit olacak$S$. Bu en açık şekilde grafiksel olarak gösterilebilir:


Eşit girintiler eşit miktarlar verir

Bu gerçeği anlamak, sorunları daha temelde çözmemizi sağlayacaktır. yüksek seviye Yukarıda ele aldığımız zorluklardan daha fazla zorluk. Örneğin bunlar:

Görev No. 8. İlk terimi 66 olan ve ikinci ve onikinci terimlerin çarpımının mümkün olan en küçük olduğu aritmetik ilerlemenin farkını belirleyin.

Çözüm. Bildiğimiz her şeyi yazalım:

\[\begin(align) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\min . \end(hizala)\]

Yani $d$ ilerleme farkını bilmiyoruz. Aslında, $((a)_(2))\cdot ((a)_(12))$ çarpımı aşağıdaki gibi yeniden yazılabileceğinden, çözümün tamamı fark etrafında oluşturulacaktır:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11 \cdot \left(d+66 \right)\cdot \left(d+6 \right). \end(hizala)\]

Tanktakiler için: İkinci gruptan toplam 11 çarpanını çıkardım. Dolayısıyla istenen çarpım $d$ değişkenine göre ikinci dereceden bir fonksiyondur. Bu nedenle, $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ fonksiyonunu düşünün - grafiği, dalları yukarıya doğru olan bir parabol olacaktır, çünkü parantezleri genişletirsek şunu elde ederiz:

\[\begin(align) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end(align)\]

Gördüğünüz gibi en yüksek terimin katsayısı 11'dir - bu pozitif sayı, yani aslında dalları yukarı doğru olan bir parabolle uğraşıyoruz:


takvim ikinci dereceden fonksiyon- parabol

Lütfen unutmayın: Bu parabol minimum değerini tepe noktasında $((d)_(0))$ $((d)_(0))$ ile alır. Elbette bu apsisi şu şekilde hesaplayabiliriz: standart şema($((d)_(0))=(-b)/(2a)\;$ formülü vardır), ancak istenen tepe noktasının simetri ekseninde yer aldığını not etmek çok daha mantıklı olacaktır. parabol olduğundan $((d) _(0))$ noktası $f\left(d \right)=0$ denkleminin köklerine eşit uzaklıktadır:

\[\begin(align) & f\left(d \right)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & ((d)_(1))=-66;\quad ((d)_(2))=-6. \\ \end(hizala)\]

Bu yüzden parantezleri açmak için özel bir acelem yoktu: orijinal hallerinde kökleri bulmak çok çok kolaydı. Bu nedenle apsis, −66 ve −6 sayılarının aritmetik ortalamasına eşittir:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

Keşfedilen sayı bize ne veriyor? Bununla birlikte gerekli ürün alınır en küçük değer(bu arada $((y)_(\min ))$'ı asla hesaplamadık - bu bizim için gerekli değil). Aynı zamanda bu sayı orijinal ilerlemenin farkıdır, yani. Cevabı bulduk :)

Cevap: −36

Görev No.9. $-\frac(1)(2)$ ve $-\frac(1)(6)$ sayıları arasına üç sayı ekleyin, böylece bu sayılarla birlikte bir aritmetik ilerleme oluştursunlar.

Çözüm. Temel olarak, ilk ve son sayı zaten bilinen beş sayıdan oluşan bir dizi oluşturmamız gerekiyor. Eksik sayıları $x$, $y$ ve $z$ değişkenleriyle gösterelim:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \right\ )\]

$y$ sayısının dizimizin "ortası" olduğuna dikkat edin - $x$ ve $z$ sayılarından ve $-\frac(1)(2)$ ve $-\frac sayılarından eşit uzaklıkta (1)(6)$. Ve eğer $x$ ve $z$ sayılarından içindeysek şu an$y$ alamıyoruz, o zaman ilerlemenin sonlarında durum farklıdır. Aritmetik ortalamayı hatırlayalım:

Şimdi $y$'ı bildiğimize göre kalan sayıları bulacağız. $x$'ın az önce bulduğumuz $-\frac(1)(2)$ ve $y=-\frac(1)(3)$ sayıları arasında yer aldığını unutmayın. Bu yüzden

Benzer akıl yürütmeyi kullanarak kalan sayıyı buluruz:

Hazır! Üç sayıyı da bulduk. Bunları orijinal sayıların arasına yerleştirilmesi gereken sırayla cevapta yazalım.

Cevap: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

Görev No. 10. Girilen sayıların birinci, ikinci ve sonuncusunun toplamının 56 olduğunu biliyorsanız, 2 ile 42 sayıları arasına, bu sayılarla birlikte aritmetik bir ilerleme oluşturan birkaç sayı ekleyin.

Çözüm. Hatta daha fazla zor görev ancak bu, öncekilerle aynı şemaya göre aritmetik ortalama yoluyla çözülür. Sorun şu ki, kaç sayının eklenmesi gerektiğini tam olarak bilmiyoruz. Bu nedenle, kesin olarak, her şeyi yerleştirdikten sonra tam olarak $n$ sayıların olacağını ve bunların ilkinin 2 ve sonuncusunun 42 olduğunu varsayalım. Bu durumda gerekli aritmetik ilerleme şu şekilde gösterilebilir:

\[\left(((a)_(n)) \right)=\left\( 2;((a)_(2));((a)_(3));...;(( a)_(n-1));42 \sağ\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

Ancak $((a)_(2))$ ve $((a)_(n-1))$ sayılarının kenarlardaki 2 ve 42 sayılarından birbirine bir adım yaklaşarak elde edildiğini unutmayın, yani. dizinin merkezine. Ve bu şu anlama geliyor

\[((a)_(2))+((a)_(n-1))=2+42=44\]

Ancak yukarıda yazılan ifade şu şekilde yeniden yazılabilir:

\[\begin(align) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \right)+((a)_(3))=56; \\ & 44+((a)_(3))=56; \\ & ((a)_(3))=56-44=12. \\ \end(hizala)\]

$((a)_(3))$ ve $((a)_(1))$'ı bildiğimiz için ilerlemenin farkını kolayca bulabiliriz:

\[\begin(align) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\left(3-1 \right)\cdot d=2d; \\ & 2d=10\Sağ ok d=5. \\ \end(hizala)\]

Geriye kalan tek şey kalan terimleri bulmak:

\[\begin(align) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \end(hizala)\]

Böylece, 9. adımda dizinin sol ucuna ulaşacağız - 42 sayısı. Toplamda yalnızca 7 sayının eklenmesi gerekiyordu: 7; 12; 17; 22; 27; 32; 37.

Cevap: 7; 12; 17; 22; 27; 32; 37

İlerlemelerle ilgili kelime problemleri

Sonuç olarak, nispeten basit birkaç sorunu ele almak istiyorum. Bu kadar basit: Okulda matematik eğitimi alan ve yukarıda yazılanları okumayan çoğu öğrenci için bu problemler zor görünebilir. Yine de bunlar matematikte OGE ve Birleşik Devlet Sınavında ortaya çıkan problem türleridir, bu yüzden bunlara aşina olmanızı tavsiye ederim.

Görev No.11. Ekip Ocak ayında 62 parça üretti ve sonraki her ayda bir önceki aya göre 14 parça daha fazla üretti. Ekip Kasım ayında kaç parça üretti?

Çözüm. Açıkçası, aya göre listelenen parça sayısı artan bir aritmetik ilerlemeyi temsil edecektir. Dahası:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\left(n-1 \right)\cdot 14. \\ \end(align)\]

Kasım yılın 11. ayı olduğundan $((a)_(11))$ bulmamız gerekiyor:

\[((a)_(11))=62+10\cdot 14=202\]

Dolayısıyla kasım ayında 202 parça üretilecek.

Görev No. 12. Ciltleme atölyesinde Ocak ayında 216 kitap ciltlendi ve sonraki her ayda bir önceki aya göre 4 kitap daha ciltlendi. Atölye Aralık ayında kaç kitap ciltledi?

Çözüm. Hepsi aynı:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\left(n-1 \right)\cdot 4. \\ \end(align)$

Aralık yılın son 12. ayı olduğundan $((a)_(12))$ ifadesini arıyoruz:

\[(((a)_(12))=216+11\cdot 4=260\]

Cevap bu: Aralık ayında 260 kitap ciltlenecek.

Buraya kadar okuduysanız sizi tebrik etmek için acele ediyorum: aritmetik ilerlemelerde "genç dövüşçü kursunu" başarıyla tamamladınız. İlerleme toplamı formülünü ve bunun önemli ve çok faydalı sonuçlarını inceleyeceğimiz bir sonraki derse güvenle geçebilirsiniz.

Matematikte, bir şekilde organize edilmiş, birbirini takip eden sayıların toplamına dizi denir. Mevcut tüm sayı dizileri arasında iki ilginç durum ayırt edilir: cebirsel ve geometrik ilerlemeler.

Aritmetik ilerleme nedir?

Cebirsel ilerlemenin genellikle aritmetik olarak adlandırıldığı söylenmelidir, çünkü özellikleri matematik dalı - aritmetik tarafından incelenmektedir.

Bu ilerleme, her bir sonraki üyenin bir öncekinden belirli bir sabit sayı kadar farklı olduğu bir sayı dizisidir. Buna cebirsel ilerlemenin farkı denir. Kesinlik için onu belirtelim Latince harf D.

Böyle bir diziye örnek şu olabilir: 3, 5, 7, 9, 11 ..., burada sayının 5 olduğunu görebilirsiniz. daha fazla sayı 3, 2'dir, 7, 5'ten fazladır, ayrıca 2'dir, vb. Dolayısıyla sunulan örnekte d = 5-3 = 7-5 = 9-7 = 11-9 = 2.

Aritmetik ilerleme türleri nelerdir?

Bu sıralı sayı dizilerinin doğası büyük ölçüde d sayısının işaretiyle belirlenir. Aşağıdaki cebirsel ilerleme türleri ayırt edilir:

  • d pozitif olduğunda artar (d>0);
  • d = 0 olduğunda sabit;
  • d negatif olduğunda azalan (d<0).

Önceki paragrafta verilen örnek artan bir ilerlemeyi göstermektedir. Azalan bir diziye örnek olarak aşağıdaki sayı dizisi verilebilir: 10, 5, 0, -5, -10, -15 ... Tanımından da anlaşılacağı gibi sabit bir ilerleme, aynı sayıların bir koleksiyonudur.

ilerlemenin n'inci dönemi

Söz konusu ilerlemedeki her bir sonraki sayının bir öncekinden sabit bir d kadar farklı olması nedeniyle, n'inci terimi kolaylıkla belirlenebilir. Bunu yapmak için sadece d'yi değil aynı zamanda ilerlemenin ilk terimi olan 1'i de bilmeniz gerekir. Özyinelemeli bir yaklaşım kullanarak, n'inci terimi bulmak için cebirsel ilerleme formülü elde edilebilir. Şuna benzer: a n = a 1 + (n-1)*d. Bu formül oldukça basittir ve sezgisel olarak anlaşılabilir.

Kullanımı da zor değil. Örneğin yukarıda verilen dizilimde (d=2, a 1=3) 35. terimini tanımlıyoruz. Formüle göre şuna eşit olacaktır: a 35 = 3 + (35-1)*2 = 71.

Tutar formülü

Bir aritmetik ilerleme verildiğinde, n'inci terimin değerinin belirlenmesinin yanı sıra ilk n teriminin toplamının alınması da sıklıkla karşılaşılan bir problemdir. Cebirsel ilerlemenin toplamına ilişkin formül şu biçimde yazılmıştır: ∑ n 1 = n*(a 1 +a n)/2, burada ∑ n 1 simgesi bunların 1'den 1'e kadar toplandığını gösterir. n'inci terim.

Yukarıdaki ifade aynı yinelemenin özelliklerine başvurularak elde edilebilir ancak geçerliliğini kanıtlamanın daha kolay bir yolu vardır. Bu toplamın ilk 2 ve son 2 terimini a 1, a n ve d sayılarıyla ifade ederek yazalım ve elde ederiz: a 1, a 1 +d,...,a n -d, a n. Şimdi, ilk terimi sonuncuya eklersek, ikinci ve sondan bir önceki terimlerin toplamına tam olarak eşit olacağını, yani a 1 +a n olacağını unutmayın. Benzer şekilde, üçüncü ve sondan bir önceki terimlerin eklenmesiyle aynı toplamın elde edilebileceği gösterilebilir. Dizide bir sayı çifti olması durumunda, her biri 1 +a n'ye eşit olan n/2 toplam elde ederiz. Yani, toplamın cebirsel ilerlemesi için yukarıdaki formülü elde ederiz: ∑ n 1 = n*(a 1 +a n)/2.

Eşlenmemiş sayıda n terimi için, açıklanan mantığı izlerseniz benzer bir formül elde edilir. İlerlemenin merkezinde yer alan kalan terimi eklemeyi unutmayın.

Yukarıda tanıtılan basit ilerleme örneğini kullanarak yukarıdaki formülün nasıl kullanılacağını gösterelim (3, 5, 7, 9, 11 ...). Mesela ilk 15 teriminin toplamını belirlemek gerekiyor. Öncelikle 15'i tanımlayalım. N'inci terimin formülünü kullanarak (önceki paragrafa bakın) şunu elde ederiz: a 15 = a 1 + (n-1)*d = 3 + (15-1)*2 = 31. Şimdi formülü şu şekilde uygulayabiliriz: cebirsel ilerlemenin toplamı: ∑ 15 1 = 15*(3+31)/2 = 255.

İlginç bir tarihsel gerçeğe değinmek ilginçtir. Aritmetik ilerlemenin toplamının formülü ilk olarak Carl Gauss (18. yüzyılın ünlü Alman matematikçisi) tarafından elde edildi. Henüz 10 yaşındayken öğretmeni ondan 1'den 100'e kadar olan sayıların toplamını bulmasını istedi. Küçük Gauss'un bu problemi birkaç saniye içinde çözdüğünü, sayıları dizinin başından ve sonundan toplayarak fark ettiğini söylüyorlar. Çiftler halinde her zaman 101 elde edebilirsiniz ve bunun gibi 50 toplam olduğu için hemen cevabı verdi: 50*101 = 5050.

Sorun çözümü örneği

Cebirsel ilerleme konusunu tamamlamak için, başka bir ilginç problemin çözümüne ilişkin bir örnek vereceğiz, böylece söz konusu konunun anlaşılmasını güçlendireceğiz. d = -3 farkının ve bunun 35. terimi a 35 = -114'ün bilindiği belirli bir ilerleme verilsin. İlerlemenin 7. terimini a 7 bulmak gerekir.

Problemin koşullarından da anlaşılacağı üzere a 1'in değeri bilinmediğinden n'inci terim için formülün doğrudan kullanılması mümkün olmayacaktır. Özyineleme yöntemi de elverişsizdir, manuel olarak uygulanması zordur ve hata yapma olasılığı yüksektir. Şu şekilde ilerleyelim: a 7 ve a 35'in formüllerini yazarsak elimizde: a 7 = a 1 + 6*d ve a 35 = a 1 + 34*d olur. İkinci ifadeyi ilk ifadeden çıkardığımızda şunu elde ederiz: a 7 - a 35 = a 1 + 6*d - a 1 - 34*d. Şu şekildedir: a 7 = a 35 - 28*d. Geriye problem tanımındaki bilinen verileri değiştirmek ve cevabı yazmak kalıyor: a 7 = -114 - 28*(-3) = -30.

Geometrik ilerleme

Makalenin konusunu daha ayrıntılı olarak ortaya çıkarmak için, başka bir ilerleme türünün - geometrik - kısa bir tanımını sunuyoruz. Matematikte bu ad, sonraki her terimin bir öncekinden belirli bir faktörle farklı olduğu bir sayı dizisi olarak anlaşılır. Bu faktörü r harfiyle gösterelim. Söz konusu ilerleme türünün paydası denir. Bu sayı dizisinin bir örneği şöyle olabilir: 1, 5, 25, 125, ...

Yukarıdaki tanımdan da görülebileceği gibi cebirsel ve geometrik ilerlemeler fikir olarak benzerdir. Aralarındaki fark, birincisinin ikinciye göre daha yavaş değişmesidir.

Geometrik ilerleme aynı zamanda artan, sabit veya azalan da olabilir. Türü r paydasının değerine bağlıdır: r>1 ise artan bir ilerleme vardır, r ise<1 - убывающая, наконец, если r = 1 - постоянная, которая в этом случае может также называться постоянной арифметической прогрессией.

Geometrik ilerleme formülleri

Cebirde olduğu gibi, geometrik ilerlemenin formülleri, onun n'inci terimini ve n terimlerin toplamını belirlemeye indirgenir. Aşağıda bu ifadeler yer almaktadır:

  • a n = a 1 *r (n-1) - bu formül geometrik ilerlemenin tanımından çıkar.
  • ∑ n 1 = a 1 *(r n -1)/(r-1). Eğer r = 1 ise yukarıdaki formül belirsizlik verir, dolayısıyla kullanılamaz. Bu durumda n terimin toplamı a 1 *n basit çarpımına eşit olacaktır.

Örneğin, 1, 5, 25, 125, ... dizisinin yalnızca 10 teriminin toplamını bulalım. a 1 = 1 ve r = 5 olduğunu bilerek şunu elde ederiz: ∑ 10 1 = 1*(5 10 -1 )/4 = 2441406. Ortaya çıkan değer, geometrik ilerlemenin ne kadar hızlı büyüdüğünü gösteren açık bir örnektir.

Belki de tarihteki bu ilerlemenin ilk sözü, padişahlardan birinin ona satranç oynamayı öğreten bir arkadaşının, hizmeti için tahıl istediği satranç tahtası efsanesidir. Dahası, tahıl miktarı şu şekilde olmalıydı: Satranç tahtasının ilk karesine bir tane, ikinci kareye birinci karenin iki katı, üçüncü kareye ikinci karenin iki katı kadar, vb. yerleştirilmelidir. . Padişah bu isteği yerine getirmeyi seve seve kabul etti ama sözünü tutmak için ülkesinin bütün çöplerini boşaltması gerekeceğini bilmiyordu.


Örneğin \(2\); dizisi \(5\); \(8\); \(onbir\); \(14\)... aritmetik bir ilerlemedir, çünkü sonraki her öğe bir öncekinden üç kat farklıdır (bir öncekinden üç ekleyerek elde edilebilir):

Bu ilerlemede, \(d\) farkı pozitiftir (\(3\'e eşittir) ve dolayısıyla her bir sonraki terim bir öncekinden daha büyüktür. Bu tür ilerlemelere denir artan.

Ancak \(d\) negatif bir sayı da olabilir. Örneğin, aritmetik ilerlemede \(16\); \(10\); \(4\); \(-2\); \(-8\)... ilerleme farkı \(d\) eksi altıya eşittir.

Ve bu durumda, sonraki her öğe bir öncekinden daha küçük olacaktır. Bu ilerlemelere denir azalan.

Aritmetik ilerleme gösterimi

İlerleme küçük bir Latin harfiyle gösterilir.

Bir dizi oluşturan sayılara denir üyeler(veya öğeler).

Aritmetik ilerlemeyle aynı harfle gösterilirler, ancak sıradaki öğenin numarasına eşit bir sayısal indeksle gösterilirler.

Örneğin, \(a_n = \left\( 2; 5; 8; 11; 14…\right\)\) aritmetik ilerlemesi \(a_1=2\); \(a_2=5\); \(a_3=8\) vb.

Başka bir deyişle, ilerleme için \(a_n = \left\(2; 5; 8; 11; 14…\right\)\)

Aritmetik ilerleme problemlerini çözme

Prensip olarak, yukarıda sunulan bilgiler hemen hemen her aritmetik ilerleme problemini (OGE'de sunulanlar dahil) çözmek için zaten yeterlidir.

Örnek (OGE). Aritmetik ilerleme \(b_1=7; d=4\) koşullarıyla belirtilir. \(b_5\) bulun.
Çözüm:

Cevap: \(b_5=23\)

Örnek (OGE). Bir aritmetik ilerlemenin ilk üç terimi verilmiştir: \(62; 49; 36…\) Bu ilerlemenin ilk negatif teriminin değerini bulun.
Çözüm:

Bize dizinin ilk elemanları veriliyor ve bunun aritmetik bir ilerleme olduğunu biliyoruz. Yani her element komşusundan aynı sayıda farklılık gösterir. Bir öncekini sonraki elemandan çıkararak hangisi olduğunu bulalım: \(d=49-62=-13\).

Artık ilerlememizi ihtiyacımız olan (ilk olumsuz) unsura geri döndürebiliriz.

Hazır. Cevap yazabilirsiniz.

Cevap: \(-3\)

Örnek (OGE). Bir aritmetik dizinin ardışık birkaç elemanı verildiğinde: \(…5; x; 10; 12.5...\) \(x\) harfiyle gösterilen elemanın değerini bulun.
Çözüm:


\(x\)'i bulmak için bir sonraki elemanın bir öncekinden ne kadar farklı olduğunu yani ilerleme farkını bilmemiz gerekir. Bunu bilinen iki komşu elemandan bulalım: \(d=12.5-10=2.5\).

Artık aradığımız şeyi kolaylıkla bulabiliyoruz: \(x=5+2.5=7.5\).


Hazır. Cevap yazabilirsiniz.

Cevap: \(7,5\).

Örnek (OGE). Aritmetik ilerleme aşağıdaki koşullarla tanımlanır: \(a_1=-11\); \(a_(n+1)=a_n+5\) Bu ilerlemenin ilk altı teriminin toplamını bulun.
Çözüm:

İlerlemenin ilk altı teriminin toplamını bulmamız gerekiyor. Ama bunların anlamlarını bilmiyoruz; bize yalnızca ilk unsur veriliyor. Bu nedenle öncelikle bize verilenleri kullanarak değerleri tek tek hesaplıyoruz:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
İhtiyacımız olan altı elementi hesapladıktan sonra toplamlarını buluyoruz.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

Gerekli miktar bulunmuştur.

Cevap: \(S_6=9\).

Örnek (OGE). Aritmetik ilerlemede \(a_(12)=23\); \(a_(16)=51\). Bu ilerlemenin farkını bulun.
Çözüm:

Cevap: \(d=7\).

Aritmetik ilerleme için önemli formüller

Gördüğünüz gibi, aritmetik ilerlemeyle ilgili birçok problem, asıl meselenin anlaşılmasıyla çözülebilir - aritmetik ilerlemenin bir sayı zinciri olduğu ve bu zincirdeki sonraki her öğenin, aynı sayının bir öncekine eklenmesiyle elde edildiği ( ilerleme farkı).

Ancak bazen “kafa kafaya” karar vermenin çok sakıncalı olduğu durumlar vardır. Örneğin, ilk örnekte beşinci elementi \(b_5\) değil, üç yüz seksen altıncı \(b_(386)\) bulmamız gerektiğini düşünün. Dört \(385\) kez eklememiz gerekiyor mu? Veya sondan bir önceki örnekte ilk yetmiş üç elementin toplamını bulmanız gerektiğini hayal edin. Saymaktan yorulacaksınız...

Dolayısıyla bu gibi durumlarda işleri “birdenbire” çözmezler, aritmetik ilerleme için türetilmiş özel formüller kullanırlar. Ve bunların başlıcaları ilerlemenin n'inci terimi formülü ve \(n\) ilk terimin toplamı formülüdür.

\(n\)'inci terimin formülü: \(a_n=a_1+(n-1)d\), burada \(a_1\) ilerlemenin ilk terimidir;
\(n\) – gerekli öğenin numarası;
\(a_n\) – \(n\) sayısıyla ilerlemenin terimi.


Bu formül, yalnızca ilkini ve ilerlemenin farkını bilerek üç yüzüncü veya milyonuncu elementi bile hızlı bir şekilde bulmamızı sağlar.

Örnek. Aritmetik ilerleme şu koşullarla belirtilir: \(b_1=-159\); \(d=8.2\). \(b_(246)\)'ı bulun.
Çözüm:

Cevap: \(b_(246)=1850\).

İlk n terimin toplamına ilişkin formül: \(S_n=\frac(a_1+a_n)(2) \cdot n\), burada



\(a_n\) – son toplanan terim;


Örnek (OGE). Aritmetik ilerleme \(a_n=3.4n-0.6\) koşullarıyla belirtilir. Bu ilerlemenin ilk \(25\) teriminin toplamını bulun.
Çözüm:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

İlk yirmi beş terimin toplamını hesaplamak için birinci ve yirmi beşinci terimin değerini bilmemiz gerekir.
İlerlememiz, sayısına bağlı olarak n'inci terimin formülü ile verilmektedir (daha fazla ayrıntı için bkz.). \(n\) yerine bir tane koyarak ilk elemanı hesaplayalım.

\(n=1;\) \(a_1=3,4·1-0,6=2,8\)

Şimdi \(n\) yerine yirmi beş koyarak yirmi beşinci terimi bulalım.

\(n=25;\) \(a_(25)=3,4·25-0,6=84,4\)

Artık gerekli miktarı kolayca hesaplayabiliriz.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2,8+84,4)(2)\) \(\cdot 25 =\)\(1090\)

Cevap hazır.

Cevap: \(S_(25)=1090\).

İlk terimlerin \(n\) toplamı için başka bir formül elde edebilirsiniz: sadece \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \'ye ihtiyacınız var (\cdot 25\ ) \(a_n\) yerine \(a_n=a_1+(n-1)d\) formülünü kullanın. Şunu elde ederiz:

İlk n terimin toplamına ilişkin formül: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), burada

\(S_n\) – \(n\) ilk elemanın gerekli toplamı;
\(a_1\) – ilk toplanan terim;
\(d\) – ilerleme farkı;
\(n\) – toplamdaki öğe sayısı.

Örnek. Aritmetik ilerlemenin ilk \(33\)-ex terimlerinin toplamını bulun: \(17\); \(15.5\); \(14\)…
Çözüm:

Cevap: \(S_(33)=-231\).

Daha karmaşık aritmetik ilerleme problemleri

Artık hemen hemen her aritmetik ilerleme problemini çözmek için ihtiyacınız olan tüm bilgilere sahipsiniz. Sadece formülleri uygulamanız değil, biraz da düşünmeniz gereken problemleri ele alarak konuyu bitirelim (matematikte bu işinize yarayabilir ☺)

Örnek (OGE). İlerlemenin tüm negatif terimlerinin toplamını bulun: \(-19.3\); \(-19\); \(-18,7\)…
Çözüm:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

Görev bir öncekine çok benzer. Aynı şeyi çözmeye başlıyoruz: önce \(d\)'yi buluyoruz.

\(d=a_2-a_1=-19-(-19.3)=0.3\)

Şimdi toplam formülüne \(d\) koymak istiyorum... ve burada küçük bir nüans ortaya çıkıyor - \(n\) bilmiyoruz. Başka bir deyişle kaç terimin eklenmesi gerektiğini bilmiyoruz. Nasıl öğrenilir? Düşünelim. İlk pozitif öğeye ulaştığımızda öğe eklemeyi bırakacağız. Yani bu elementin sayısını bulmanız gerekiyor. Nasıl? Bizim durumumuz için aritmetik ilerlemenin herhangi bir elemanını hesaplamak için formülü yazalım: \(a_n=a_1+(n-1)d\).

\(a_n=a_1+(n-1)d\)

\(a_n=-19,3+(n-1)·0,3\)

Sıfırdan büyük olması için \(a_n\)'a ihtiyacımız var. Bunun ne zaman olacağını \(n\) öğrenelim.

\(-19,3+(n-1)·0,3>0\)

\((n-1)·0,3>19,3\) \(|:0,3\)

Eşitsizliğin her iki tarafını \(0,3\)'a bölüyoruz.

\(n-1>\)\(\frac(19.3)(0.3)\)

İşaretleri değiştirmeyi unutmadan eksi bir aktarıyoruz

\(n>\)\(\frac(19.3)(0.3)\) \(+1\)

Hadi hesaplayalım...

\(n>65,333…\)

...ve ilk pozitif elemanın \(66\) sayısına sahip olacağı ortaya çıktı. Buna göre son negatif \(n=65\) olur. Her ihtimale karşı şunu kontrol edelim.

\(n=65;\) \(a_(65)=-19,3+(65-1)·0,3=-0,1\)
\(n=66;\) \(a_(66)=-19,3+(66-1)·0,3=0,2\)

Bu yüzden ilk \(65\) elemanını eklememiz gerekiyor.

\(S_(65)=\) \(\frac(2 \cdot (-19,3)+(65-1)0,3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38,6+19,2)(2)\)\(\cdot 65=-630,5\)

Cevap hazır.

Cevap: \(S_(65)=-630.5\).

Örnek (OGE). Aritmetik ilerleme şu koşullarla belirtilir: \(a_1=-33\); \(a_(n+1)=a_n+4\). \(26\)th'den \(42\) elemanına kadar olan toplamı bulun.
Çözüm:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

Bu problemde ayrıca elemanların toplamını bulmanız gerekir, ancak ilkinden değil \(26\)'dan başlayarak. Böyle bir durum için elimizde bir formül yok. Nasıl karar verilir?
Çok kolay - \(26\)'dan \(42\)'ye kadar olan toplamı bulmak için, önce \(1\)'den \(42\)'ye kadar olan toplamı bulmalı ve sonra çıkarmalısınız ondan birinciden \(25\)'inciye kadar olan toplam (resme bakın).


İlerlememiz için \(a_1=-33\) ve fark \(d=4\) (sonuçta, bir sonrakini bulmak için dördünü önceki öğeye ekleriz). Bunu bilerek ilk \(42\)-y elemanlarının toplamını buluyoruz.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

Şimdi ilk \(25\) elemanların toplamı.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

Ve son olarak cevabı hesaplıyoruz.

\(S=S_(42)-S_(25)=2058-375=1683\)

Cevap: \(S=1683\).

Aritmetik ilerleme için, pratik kullanışlılığının düşük olması nedeniyle bu makalede dikkate almadığımız birkaç formül daha vardır. Ancak bunları kolayca bulabilirsiniz.