Строение клетки органоиды таблица. Функции и строение органоидов клетки

Мельчайшими единицами живого. Однако многие высокодифференцированные клетки эту способность утратили. Цитология как наука В конце 19 в. главное внимание цитологов было направлено на подробное изучение строения клеток, процесса их деления и выяснение их роли как важнейших единиц, обеспечивающих физическую основу наследственности и процесса развития. Развитие новых методов. Вначале при...

Как «прекрасный май, который цветет лишь однажды, и никогда более» (И. Гете), исчерпала себя и была смещена христианским Средневековьем . 2. Клетка как структурная и функциональная единица живого. Состав и строение клетки Современная клеточная теория включает следующие положения: 1. Все живые организмы состоят из клеток. Клетка – структурная, функциональная единица живого, ...

0,05 - 0,10 Кальций Магний Натрий Железо Цинк Медь Йод Фтор 0,04 - 2,00 0,02 - 0,03 0,02 - 0,03 0,01 - 0,015 0,0003 0,0002 0,0001 0,0001 Содержание в клетке химических соединений Соединения (в %) Неорганические Органические Вода Неорганические вещества 70 - 80 1,0 - 1,5 Белки Углеводы Жиры Нуклеиновые кислоты 10 - 20 0,2 ...

И эти два органоида, как отмечено выше, представляют единый аппарат синтеза и транспортировки образующихся в клетке белков. Комплекс Гольджи. Комплекс Гольджи – органоид клетки, названный так по имени итальянского ученого К. Гольджи, который впервые увидел его в цитоплазме нервных клеток (1898) и обозначил как сетчатый аппарат. Сейчас комплекс Гольджи обнаружен во всех клетках растительных и...

Органоиды клетки — стойкие клеточные органы, структуры, которые обеспечивают осуществление ряда функций в процессе жизнедеятельности клетки: сохранение и передачу генетической информации, движение, деление, перенос веществ, синтез и другие.

К органеллам клеток эукариот входят:

  • хромосомы;
  • рибосомы;
  • митохондрии;
  • клеточная мембрана;
  • микрофиламенты;
  • микротрубочки;
  • комплекс Гольджи;
  • эндоплазматическая сеть;
  • лизосомы.

Также обычно ядро относят к органоидам клеток эукариот. Основная особенность растительной клетки — это наличие пластид.

Строение растительной клетки:

Как правило, растительная клетка включает:

  • мембрана;
  • цитоплазма с органоидами;
  • целлюлозная оболочка;
  • вакуоли с клеточным соком;
  • ядро.

Строение животной клетки:

Строение животной клетки состоит из:

  • цитоплазма с органоидами;
  • ядро с хромосомами;
  • наличие наружной мембраны.

Какую функцию выполняют клеточные органоиды — таблица

Название органоида Строение органоида Функции органоида
Эндоплазматическая сеть (ЭПС) Система плоские слоев, которая создает полости и каналы. Существует два типа: гладкая и гранулированная (есть рибосомы).

1. Разделяет цитоплазму клетки на изолированные пространства, с целью отсоединить большинство параллельно идущих реакций.

2. На гладкой ЭПС синтезируются углеводы и жиры, а на гранулированной — белки.

3. Нужна для доставки и циркуляции питательных веществ внутри клетки.

Митохондрии

Размеры составляют от 1 до 7 мкм. Число митохондрий может равняться до десятков тысяч в клетке. Внешняя оболочка митохондрий наделена двухмембранной структурой. Наружная мембрана гладкая. Внутренняя состоит из выростов крестообразной формы с дыхательными ферментами.

1. Обеспечивают синтез АТФ.

2. Энергетическая функция.

Клеточная мембрана Имеет трехслойную структуру. Содержит липиды трех классов: фосфолипиды, гликолипиды, холестерол.

1. Поддержание структуры мембран.

2. Перемещение различных молекул.

3. Выборочная проницаемость.

4. Получение и изменение сигналов из окружающей среды.

Ядро Самая большая органелла, которая помещена в оболочку из двух мембран. Имеет хроматин, а также содержит структуру «ядрышко».

1. Хранение генетической информации, а также передача её дочерним клеткам в процессе деления.

2. Хромосомы содержат ДНК.

3. В ядрышке формируются рибосомы.

4. Контроль жизнедеятельности клетки.

Рибосомы Мелкие органоиды, которые имеют сферическую или эллипсоидную форму. Диаметр обычно составляет 15-30 нанометров. 1. Обеспечивают синтез белка.
Цитоплазма

Внутренняя среда клетки, которая содержит ядро и прочие органоиды. Структура — мелкозернистая, полужидкая.

1. Транспортная функция.

2. Нужна для взаимодействия органоидов.

2. Регулирует скорость протекания обменных биохимических процессов.

Лизосомы Обычный сферический мембранный мешочек, который заполненный пищеварительными ферментами.

1. Различные функции, которые связаны с распадом молекул или структур.

Клеточные органеллы — видео

Наука, изучающая строение и функции клеток, называется цитология .

Клетка - элементарная структурная и функциональная единица живого.

Клетки, несмотря на свои малые размеры, устроены очень сложно. Внутреннее полужидкое содержимое клетки получило название цитоплазмы .

Цитоплазма является внутренней средой клетки, где проходят различные процессы и расположены компоненты клетки - органеллы (органоиды).

Клеточное ядро

Клеточное ядро - это важнейшая часть клетки.
От цитоплазмы ядро отделено оболочкой, состоящей из двух мембран. В оболочке ядра имеются многочисленные поры для того, чтобы различные вещества могли попадать из цитоплазмы в ядро, и наоборот.
Внутреннее содержимое ядра получило название кариоплазмы или ядерного сока . В ядерном соке расположены хроматин и ядрышко .
Хроматин представляет собой нити ДНК. Если клетка начинает делиться, то нити хроматина плотно накручиваются спиралью на особые белки, как нитки на катушку. Такие плотные образования хорошо видны в микроскоп и называются хромосомами .

Ядро содержит генетическую информацию и управляет жизнедеятельностью клетки.

Ядрышко представляет собой плотное округлое тело внутри ядра. Обычно в ядре клетки бывает от одного до семи ядрышек. Они хорошо видны между делениями клетки, а во время деления - разрушаются.


Функция ядрышек - синтез РНК и белков, из которых формируются особые органоиды - рибосомы .
Рибосомы участвуют в биосинтезе белка. В цитоплазме рибосомы чаще всего расположены на шероховатой эндоплазматической сети . Реже они свободно взвешены в цитоплазме клетки.

Эндоплазматическая сеть (ЭПС) участвует в синтезе белков клетки и транспортировке веществ внутри клетки.

Значительная часть синтезируемых клеткой веществ (белков, жиров, углеводов) не расходуется сразу, а по каналам ЭПС поступает для хранения в особые полости, уложенные своеобразными стопками, “цистернами”, и отграниченные от цитоплазмы мембраной. Эти полости получили название аппарат (комплекс) Гольджи . Чаще всего цистерны аппарата Гольджи расположены вблизи от ядра клетки.
Аппарат Гольджи принимает участие в преобразовании белков клетки и синтезирует лизосомы - пищеварительные органеллы клетки.
Лизосомы представляют собой пищеварительные ферменты, “упаковываются” в мембранные пузырьки, отпочковываются и разносятся по цитоплазме.
В комплексе Гольджи также накапливаются вещества, которые клетка синтезирует для нужд всего организма и которые выводятся из клетки наружу.

Митохондрии - энергетические органоиды клеток. Они преобразуют питательные вещества в энергию (АТФ), участвуют в дыхании клетки.

Митохондрии покрыты двумя мембранами: наружная мембрана гладкая, а внутренняя имеет многочисленные складки и выступы - кристы.

Плазматическая мембрана

Чтобы клетка представляла собой единую систему, необходимо, чтобы все ее части (цитоплазма, ядро, органоиды) удерживались вместе. Для этого в процессе эволюции развилась плазматическая мембрана , которая, окружая каждую клетку, отделяет ее от внешней среды. Наружная мембрана защищает внутреннее содержимое клетки - цитоплазму и ядро - от повреждений, поддерживает постоянную форму клетки, обеспечивает связь клеток между собой, избирательно пропускает внутрь клетки необходимые вещества и выводит из клетки продукты обмена.

Строение мембраны одинаково у всех клеток. Основу мембраны составляет двойной слой молекул липидов, в котором расположены многочисленные молекулы белков. Некоторые белки находятся на поверхности липидного слоя, другие - пронизывают оба слоя липидов насквозь.

Специальные белки образуют тончайшие каналы, по которым внутрь клетки или из нее могут проходить ионы калия, натрия, кальция и некоторые другие ионы, имеющие маленький диаметр. Однако более крупные частицы (молекулы пищевых веществ - белки, углеводы, липиды) через мембранные каналы пройти не могут и попадают в клетку при помощи фагоцитоза или пиноцитоза:

  • В том месте, где пищевая частица прикасается к наружной мембране клетки, образуется впячивание, и частица попадает внутрь клетки, окруженная мембраной. Этот процесс называется фагоцитозом (клетки растений поверх наружной клеточной мембраны покрыты плотным слоем клетчатки (клеточной оболочкой) и не могут захватывать вещества при помощи фагоцитоза).
  • Пиноцитоз отличается от фагоцитоза лишь тем, что в этом случае впячивание наружной мембраны захватывает не твердые частицы, а капельки жидкости с растворенными в ней веществами. Это один из основных механизмов проникновения веществ в клетку.

Клетки, подобно кирпичикам дома, являются строительным материалом практически всех живых организмов. Из каких частей они состоят? Какую функцию в клетке выполняют различные специализированные структуры? На эти и многие другие вопросы вы найдете ответы в нашей статье.

Что такое клетка

Клеткой называют наименьшую структурную и функциональную единицу живых организмов. Несмотря на относительно небольшие размеры, она образует свой уровень развития. Примерами одноклеточных организмов являются зеленые водоросли хламидомонада и хлорелла, простейшие животные эвглена, амеба и инфузория. Их размеры действительно микроскопические. Однако функция клетки организма данной систематической единицы достаточно сложна. Это питание, дыхание, обмен веществ, передвижение в пространстве и размножение.

Общий план строения клеток

Клеточное строение имеют не все живые организмы. К примеру, вирусы образованы нуклеиновыми кислотами и белковой оболочкой. Из клеток состоят растения, животные, грибы и бактерии. Все они отличаются особенностями строения. Однако общая их структура одинакова. Она представлена поверхностным аппаратом, внутренним содержимым - цитоплазмой, органеллами и включениями. Функции клеток обусловлены особенностями строения этих составляющих. К примеру, у растений фотосинтез осуществляется на внутренней поверхности особых органелл, которые называются хлоропластами. У животных данные структуры отсутствуют. Строение клетки (таблица "Строение и функции органелл" подробно рассматривает все особенности) определяет ее роль в природе. Но для всех многоклеточных организмов общей является обеспечение обмена веществ и взаимосвязи между всеми органами.

Строение клетки: таблица "Строение и функции органелл"

Данная таблица поможет подробно ознакомиться со строением клеточных структур.

Клеточная структура Особенности строения Функции
Ядро Двумембранная органелла, в матриксе которой находятся молекулы ДНК Хранение и передача наследственной информации
Эндоплазматическая сеть Система полостей, цистерн и канальцев Синтез органических веществ
Комплекс Гольджи Многочисленные полости из мешочков Хранение и транспортировка органических веществ
Митохондрии Двумембранные органеллы округлой формы Окисление органических веществ
Пластиды Двумембранные органеллы, внутренняя поверхность которых образует выросты внутрь структуры Хлоропласты обеспечивают процесс фотосинтеза, хромопласты придают цвет различным частям растений, лейкопласты запасают крахмал
Рибосомы состоящие из большой и малой субъединиц Биосинтез белка
Вакуоли

В растительных клетках это полости, заполненные клеточным соком, а у животных - сократительные и пищеварительные

Запас воды и минеральных веществ (растения). обеспечивают выведение излишков воды и солей, а пищеварительные - обмен веществ
Лизосомы Округлые пузырьки, содержащие гидролитические ферменты Расщепление биополимеров
Клеточный центр Немембранная структура, состоящая из двух центриолей Формирование веретена деления во время дробления клеток

Как видите, каждая клеточная органелла имеет свою сложную структуру. Причем строение каждой из них определяет и выполняемые функции. Только согласованная работа всех органелл позволяет существовать жизни на клеточном, тканевом и организменном уровнях.

Основные функции клетки

Клетка - уникальная структура. С одной стороны, каждая ее составляющая играет свою роль. С другой - функции клетки подчинены единому согласованному механизму работы. Именно на этом уровне организации жизни осуществляются важнейшие процессы. Одним из них является размножение. В его основе лежит процесс Существует два основных его способа. Так, гаметы делятся путем мейоза, все остальные (соматические) - митоза.

Благодаря тому что мембрана является полупроницаемой, возможно поступление в клетку и в обратном направлении различных веществ. Основой для всех обменных процессов является вода. Поступая в организм, биополимеры расщепляются до простых соединений. А вот минеральные вещества находятся в растворах в виде ионов.

Клеточные включения

Функции клеток не осуществлялись бы в полном объеме без наличия включений. Эти вещества являются запасом организмов на неблагоприятный период. Это может быть засуха, понижение температуры, недостаточное количество кислорода. Запасающие функции веществ в клетке растений выполняет крахмал. Он находится в цитоплазме в виде гранул. В животных клетках запасным углеводом служит гликоген.

Что такое ткани

У клетки, сходные по строению и функциям, объединяются в ткани. Эта структура является специализированной. К примеру, все клетки эпителиальной ткани мелкие, плотно прилегают друг к другу. Форма их весьма разнообразна. В данной ткани практически отсутствует Такое строение напоминает щит. Благодаря этому эпителиальная ткань выполняет защитную функцию. Но любому организму необходим не только "щит", но и взаимосвязь с окружающей средой. Чтобы осуществить и эту функцию, в эпителиальной есть особые образования - поры. А у растений подобной структурой служат устьица кожицы или чечевички пробки. Эти структуры осуществляют газообмен, транспирацию, фотосинтез, терморегуляцию. И прежде всего эти процессы осуществляются на молекулярном и клеточном уровне.

Взаимосвязь строения и функций клеток

Функции клеток обусловлены их строением. Все ткани являются ярким примером этому. Так, миофибриллы способны к сокращению. Это клетки мышечной ткани, которые осуществляют передвижение отдельных частей и всего тела в пространстве. А вот у соединительной - другой принцип строения. Данный вид ткани состоит из крупных клеток. Именно они являются основой всего организма. Соединительная ткань также содержит большое количество межклеточного вещества. Такое строение обеспечивает ее достаточный объем. Этот вид ткани представлен такими разновидностями, как кровь, хрящевая, костная ткани.

Говорят, что не восстанавливаются... На этот факт существует много разных взглядов. Однако никто не сомневается, что нейроны связывают весь организм в единое целое. Это достигается другой особенностью строения. Нейроны состоят из тела и отростков - аксонов и дендритов. По ним информация и поступает последовательно от нервных окончаний к головному мозгу, а оттуда - обратно к рабочим органам. В результате работы нейронов весь организм связан единой сетью.

Итак, большинство живых организмов имеют клеточное строение. Эти структуры являются единицами строения растений, животных, грибов и бактерий. Общие функции клеток - это способность к делению, восприятие к факторам окружающей среды и обмен веществ.

Самостоятельная биосистема, которая обладает основными свойствами всего живого. Так, она может развиваться, размножаться, двигаться, адаптироваться и изменяться. Кроме этого, любым клеткам присущ обмен веществ, специфическое строение, упорядоченность структур и функций.

Наука, которая занимается изучением клеток, - это цитология. Ее предметом являются структурные единицы многоклеточных животных и растений, одноклеточные организмы - бактерии, простейшие и водоросли, состоящие всего из одной клетки.

Если говорить об общей организации структурных единиц живых организмов, то они состоят из оболочки и ядра с ядрышком. Также в их состав входят органоиды клетки, цитоплазма. На сегодняшний день высокоразвиты разнообразные методы исследования, но ведущее место занимает микроскопия, которая позволяет изучать строение клеток и исследовать ее основные структурные элементы.

Что такое органоид?

Органоиды (их еще называют органеллами) - постоянные составляющие элементы любой клетки, которые делают ее целостной и выполняют определенные функции. Это структуры, которые являются жизненно необходимыми для поддержания ее деятельности.

К органоидам относятся ядро, лизосомы, эндоплазматическая сеть и комплекс Гольджи, вакуоли и везикулы, митохондрии, рибосомы, а также клеточный центр (центросома). Сюда также относят структуры, которые образуют цитоскелет клетки (микротрубочки и микрофиламенты), меланосомы. Отдельно следует выделить органоиды движения. Это реснички, жгутики, миофибриллы и псевдоножки.

Все эти структуры взаимосвязаны и обеспечивают скоординированную деятельность клеток. Именно поэтому на вопрос: «Что такое органоид?» - можно ответить, что это компонент, который можно приравнять к органу многоклеточного организма.

Классификация органоидов

Клетки отличаются размерами и формой, а также своими функциями, но при этом они имеют сходное химическое строение и единый принцип организации. При этом вопрос о том, что такое органоид и какие это структуры, достаточно дискуссионный. Так, например, лизосомы или вакуоли иногда не относят к клеточным органеллам.

Если говорить о классификации данных компонентов клеток, то выделяют немембранные и мембранные органоиды. Немембранные - это клеточный центр и рибосомы. Органоиды движения (микротрубочки и микрофиламенты) также лишены мембран.

В основе строения мембранных органелл лежит наличие биологической мембраны. Одномебранные и двумембранные органоиды имеют оболочку с единой структурой, которая состоит из двойного слоя фосфолипидов и белковых молекул. Она отделяет цитоплазму от внешней среды, помогает клетке сохранять форму. Стоит вспомнить, что в помимо мембраны еще есть и внешняя целлюлозная оболочка, которую называют клеточной стенкой. Она выполняет опорную функцию.

К мембранным органеллам относится ЭПС, лизосомы и митохондрии, а также лизосомы и пластиды. Их мембраны могут отличаться только по набору протеинов.

Если говорить о функциональной способности органелл, то некоторые из них способны синтезировать определенные вещества. Так, важные органоиды синтеза - митохондрии, в которых образуется АТФ. Рибосомы, пластиды (хлоропласты) и шероховатая эндоплазматическая сеть отвечают за синтез белков, гладкая ЭПС - за синтез липидов и углеводов.

Рассмотрим строение и функции органоидов более подробно.

Ядро

Данная органелла чрезвычайно важна, поскольку при ее удалении клетки перестают функционировать и погибают.

Ядро имеет двойную мембрану, в которой есть множество пор. При помощи них оно тесно связывается с эндоплазматической сетью и цитоплазмой. Данный органоид содержит хроматин - хромосомы, которые являются комплексом протеинов и ДНК. Учитывая это, можно сказать, что именно ядро является органеллой, которая отвечает за сохранение основного количества генома.

Жидкая часть ядра называется кариоплазмой. В ней содержатся продукты жизнедеятельности структур ядра. Наиболее плотная зона - ядрышко, в котором размещаются рибосомы, сложные белки и РНК, а также фосфаты калия, магния, цинка, железа и кальция. Ядрышко исчезает перед и формируется снова на последних этапах данного процесса.

Эндоплазматическая сеть (ретикулум)

ЭПС - одномембранный органоид. Он занимает половину объема клетки и состоит из канальцев и цистерн, которые связаны между собой, а также с цитоплазматической мембраной и внешней оболочкой ядра. Мембрана данного органоида имеет такую же структуру, что и плазмалема. Данная структура целостная и не открывается в цитоплазму.

Эндоплазматический ретикулум бывает гладким и гранулярным (шероховатым). На внутренней оболочке гранулярной ЭПС размещаются рибосомы, в которых проходит синтез протеинов. На поверхности гладкой эндоплазматической сети рибосомы отсутствуют, но здесь проходит синтез углеводов и жиров.

Все вещества, которые образуются в эндоплазматической сети, переносятся по системе канальцев и трубочек к местам назначения, где накапливаются и впоследствии используются в различных биохимических процессах.

Учитывая синтезирующую способность ЭПС, шероховатый ретикулум размещается в клетках, основная функция которых - образование протеинов, а гладкий - в клетках, синтезирующих углеводы и жиры. Кроме этого, в гладком ретикулуме накапливаются ионы кальция, которые нужны для нормального функционирования клеток или организма в целом.

Надо также отметить, что ЭПС является местом образования аппарата Гольджи.

Лизосомы, их функции

Лизосомы - это клеточные органоиды, которые представлены одномембранными мешочками округлой формы с гидролитическими и пищеварительными ферментами (протеазы, липазы и нуклеазы). Для содержимого лизосом характерна кислая среда. Мембраны данных образований изолируют их от цитоплазмы, предупреждая разрушение других структурных компонентов клеток. При высвобождении ферментов лизосомы в цитоплазму происходит саморазрушение клетки - автолиз.

Следует отметить, что ферменты первично синтезируются на шероховатой эндоплазматической сетке, после чего перемещаются в аппарат Гольджи. Здесь они проходят модификацию, упаковываются в мембранные пузырьки и начинают отделяться, становясь самостоятельными компонентами клетки - лизосомами, которые бывают первичными и вторичными.

Первичные лизосомы - структуры, которые отделяются от аппарата Гольджи, а вторичные (пищеварительные вакуоли) - это те, которые образуются вследствие слияния первичных лизосом и эндоцитозных вакуолей.

Учитывая такую структуру и организацию, можно выделить основные функции лизосом:

  • переваривание разных веществ внутри клетки;
  • уничтожение клеточных структур, которые не нужны;
  • участие в процессах реорганизации клеток.

Вакуоли

Вакуоли - это одномембранные органеллы сферической формы, которые являются резервуарами воды и растворенных в ней органических и неорганических соединений. В образовании данных структур участвует аппарат Гольджи и ЭПС.

В животной клетке вакуолей немного. Они мелкие и занимают не более 5% объема. Их основная роль - обеспечение транспорта веществ по всей клетке.

Вакуоли большие и занимают до 90% объема. В зрелой клетке есть только одна вакуоль, которая занимает центральное положение. Ее мембрану называют тонопластом, а содержимое - клеточным соком. Основные функции растительных вакуолей - обеспечение напряжения клеточной оболочки, накопление различных соединений и отходов жизнедеятельности клетки. Кроме того, эти органоиды растительной клетки поставляют воду, необходимую для процесса фотосинтеза.

Если говорить о составе клеточного сока, то в него входят следующие вещества:

  • запасные - органические кислоты, углеводы и протеины, отдельные аминокислоты;
  • соединения, которые образуются в процессе жизнедеятельности клеток и накапливаются в них (алкалоиды, дубильные вещества и фенолы);
  • фитонциды и фитогормоны;
  • пигменты, за счет которых плоды, корнеплоды и лепестки цветов окрашиваются в соответствующий цвет.

Комплекс Гольджи

Строение органоидов под названием «аппарат Гольджи» довольно простое. В клетках растений они выглядят как отдельные тельца с мембраной, в клетках животных они представлены цистернами, канальцами и пузырями. Структурная единица комплекса Гольджи - это диктиосома, которая представлена стопкой из 4-6 «цистерн» и мелких пузырьков, что отделяются от них и являются внутриклеточной транспортной системой, а также могут служить источником лизосом. Число диктиосом может колебаться от одной до нескольких сотен.

Комплекс Гольджи, как правило, размещается около ядра. В животных клетках - возле клеточного центра. Основными функциями этих органелл является следующее:

  • секреция и накопление протеинов, липидов и сахаридов;
  • модификация органических соединений, поступающих в комплекс Гольджи;
  • данный органоид является местом образования лизосом.

Следует отметить, что ЭПС, лизосомы, вакуоли, а также аппарат Гольджи вместе образуют канальцево-вакуолярную систему, которая разделяет клетку на отдельные участки с соответствующими функциями. Кроме того, данная система обеспечивает постоянное обновление мембран.

Митохондрии - энергетические станции клетки

Митохондрии - двумембранные органоиды палочковидной, шаровидной или нитевидной формы, которые синтезируют АТФ. Они имеют внешнюю гладкую поверхность и внутреннюю мембрану с многочисленными складками, которые называются кристами. Следует отметить, что число крист в митохондриях может меняться в зависимости от потребности клетки в энергии. Именно на внутренней мембране сосредоточены многочисленные ферментные комплексы, синтезирующие аденозинтрифосфат. Здесь энергия химических связей превращается в АТФ. Кроме того, в митохондриях проходит расщепление жирных кислот и углеводов с высвобождением энергии, которая накапливается и используется на процессы роста и синтеза.

Внутренняя среда данных органелл называется матриксом. Она содержит кольцевые ДНК и РНК, мелкие рибосомы. Интересно, что митохондрии - полуавтономные органоиды, поскольку зависят от функционирования клетки, но в то же время могут сохранять определенную самостоятельность. Так, они способны синтезировать собственные белки и ферменты, а также размножаться самостоятельно.

Считается, что митохондрии возникли при попадании в клетку-хозяина аэробных прокариотических организмов, что привело к образованию специфического симбиотического комплекса. Так, митохондриальная ДНК имеет такое же строение, как и ДНК современных бактерий, а синтез белков и в митохондриях, и в бактериях ингибируется одинаковыми антибиотиками.

Пластиды - органоиды растительной клетки

Пластиды являются достаточно крупными органеллами. Они присутствуют только в клетках растений и образуются из предшественников - пропластид, содержат ДНК. Эти органоиды играют важную роль в метаболизме и отделены от цитоплазмы двойной мембраной. Кроме этого, в них может образовываться упорядоченная система внутренних мембран.

Пластиды бывают трех типов:

Рибосомы

Что такое органоид под названием называют состоящие из двух фрагментов (малой и большой субъединицы). Их диаметр составляет около 20 нм. Они встречаются в клетках всех типов. Это органоиды животных и растительных клеток, бактерий. Образуются эти структуры в ядре, после чего переходят в цитоплазму, где размещаются свободно или прикрепляются к ЭПС. В зависимости от синтезирующих свойств рибосомы функционируют в одиночку или объединяются в комплексы, образуя полирибосомы. В данном случае эти немембранные органеллы связываются молекулой информационной РНК.

Рибосома содержит 4 молекулы р-РНК, которые составляют ее каркас, а также различные белки. Основная задача данного органоида - сбор полипептидной цепи, что является первой стадией синтеза протеинов. Те белки, которые образуются рибосомами эндоплазматического ретикулума, могут использоваться всем организмом. Протеины для потребностей отдельной клетки синтезируются рибосомами, которые размещаются в цитоплазме. Следует отметить, что рибосомы также встречаются в митохондриях и пластидах.

Цитоскелет клетки

Клеточный цитоскелет образуется микротрубочками и микрофиламентами. Микротрубочки представляют собой цилиндрические образования диаметром 24 нм. Их длина составляет 100 мкм-1 мм. Основной компонент - белок под названием тубулин. Он неспособен к сокращению и может разрушаться под действием колхицина. Микротрубочки располагаются в гиалоплазме и выполняют следующие функции:

  • создают эластичный, но в то же время прочный каркас клетки, который позволяет ей сохранять форму;
  • принимают участие в процессе распределения хромосом клетки;
  • обеспечивают перемещение органелл;
  • содержатся в клеточном центре, а также в жгутиках и ресничках.

Микрофиламенты - нити, которые размещаются под и состоят из белка актина или миозина. Они могут сокращаться, в результате чего идет перемещение цитоплазмы или выпячивание клеточной мембраны. Кроме того, данные компоненты принимают участие в образовании перетяжки при делении клетки.

Клеточный центр (центросома)

Данная органелла состоит из 2 центриолей и центросферы. Центриоль цилиндрической формы. Ее стенки образуются тремя микротрубочками, которые сливаются между собой посредством поперечных сшивок. Центриоли располагаются парами под прямым углом друг к другу. Следует отметить, что клетки высших растений лишены данных органоидов.

Основная роль клеточного центра - обеспечение равномерного распределения хромосом в ходе клеточного деления. Также он является центром организации цитоскелета.

Органеллы движения

К органоидам движения относят реснички, а также жгутики. Это миниатюрные выросты в виде волосков. Жгутик содержит 20 микротрубочек. Его основа размещается в цитоплазме и называется базальным тельцем. Длина жгутика составляет 100 мкм или более. Жгутики, которые имеют всего 10-20 мкм, называются ресничками. При скольжении микротрубочек реснички и жгутики способны колебаться, вызывая движение самой клетки. В цитоплазме могут содержаться сократительные фибриллы, которые называются миофибриллами - это органоиды животной клетки. Миофибриллы, как правило, размещаются в миоцитах - клетках мышечной ткани, а также в клетках сердца. Они состоят из более мелких волокон (протофибрилл).

Следует отметить, что пучки миофибрилл состоят из темных волокон - это анизотропные диски, а также светлых участков - это изотропные диски. Структурная единица миофибриллы - саркомер. Это участок между анизотропным и изотропным диском, который имеет актиновые и миозиновые нити. При их скольжении происходит сокращение саркомера, что приводит к движению всего мышечного волокна. При этом используется энергия АТФ и ионы кальция.

При помощи жгутиков движутся простейшие и сперматозоиды животных. Реснички являются органом движения инфузории-туфельки. У животных и человека они покрывают воздухоносные дыхательные пути и помогают избавляться от мелких твердых частиц, например, от пыли. Кроме этого, существуют еще псевдоножки, которые обеспечивают амебоидное движение и являются элементами многих одноклеточных и клеток животных (к примеру, лейкоцитов).

Большинство растений не могут перемещаться в пространстве. Их движения заключаются в росте, перемещениях листьев и изменениях потока цитоплазмы клеток.

Заключение

Несмотря на все разнообразие клеток, все они имеют сходную структуру и организацию. Строение и функции органоидов характеризуются идентичными свойствами, обеспечивая нормальное функционирование как отдельной клетки, так и всего организма.

Эту закономерность можно выразить следующим образом.

Таблица «Органоиды клетки эукариот»

Органоид

Растительная клетка

Животная клетка

Основные функции

хранение ДНК, транскрипция РНК и синтез протеинов

эндоплазматическая сетка

синтез протеинов, липидов и углеводов, накопление ионов кальция, образование комплекса Гольджи

митохондрии

синтез АТФ, собственных ферментов и белков

пластиды

участие в фотосинтезе, накопление крахмала, липидов, протеинов, каротиноидов

рибосомы

сбор полипептидной цепи (синтез белков)

микротрубочки и микрофиламенты

позволяют клетке сохранять определенную форму, являются составной частью клеточного центра, ресничек и жгутиков, обеспечивают перемещение органелл

лизосомы

переваривание веществ внутри клетки, уничтожение ее ненужных структур, участие в реорганизации клеток, обусловливают автолиз

большая центральная вакуоль

обеспечивает напряжение клеточной оболочки, накапливает питательные вещества и продукты жизнедеятельности клетки, фитонциды и фитогормоны, а также пигменты, является резервуаром воды

комплекс Гольджи

секретирует и накапливает протеины, липиды и углеводы, модифицирует питательные вещества, которые поступают в клетку, отвечает за образование лизосом

клеточный центр

есть, кроме высших растений

является центром организации цитоскелета, обеспечивает равномерное расхождение хромосом при делении клеток

миофибриллы

обеспечивают сокращение мышечной ткани

Если сделать выводы, то можно сказать, что существуют незначительные различия между животной и растительной клеткой. При этом функциональные особенности и строение органоидов (таблица, указанная выше, подтверждает это) имеет общий принцип организации. Клетка функционирует как слаженная и целостная система. При этом функции органоидов взаимосвязаны и направлены на оптимальную работу и поддержание жизнедеятельности клетки.